{"title":"环境四氯化碳暴露通过p38MAPK/NF-κB/NLRP3途径破坏小鼠肝脏结构和代谢解毒功能","authors":"Yuanyuan Wei, Danyang Ma, Yimeng Fan, Chen Gao, Qingtao Wang, Yanmeng Yuan, Yan-nan Zhang, J. Han, Zhihui Hao","doi":"10.1080/09540105.2022.2060192","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigated the effects of carbon tetrachloride (CCl4) exposure on liver detoxification. We confirmed that 0.2%-0.8% CCl4 decreased the liver carboxylesterase (CarE), lactate dehydrogenase (LDH) activity and total protein (TP) levels, while 0.2% and 0.8% CCl4 increased the liver acetylcholine esterase (AChE) activity (P< 0.05). It was observed0.4%-0.8% CCl4 increased serum glutathione S-transferase (GST) and catalase (CAT) activity, 0.1%-0.8% CCl4 increased the level of malondialdehyde (MDA), and 0.2% CCl4 increased the level of total superoxide dismutase (T-SOD). The expression of nod-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α) were significantly elevated in 0.2%-0.8% CCl4 exposure (P< 0.05). The expression of p38MAPK, gasdermin D (GSDMD), and nuclear factor kappa-B kinase (IKK) was decreased in 0.1%-0.8% CCl4 exposure, while the apoptosis was not statistically different in all groups. This indicates that 0.1% CCl4 exposure could damage the liver structure and detoxification function via p38MAPK/NF-κB/NLRP3 pathway. GRAPHICAL ABSTRACT","PeriodicalId":12300,"journal":{"name":"Food and Agricultural Immunology","volume":"33 1","pages":"235 - 251"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental carbon tetrachloride exposure disrupts the liver structure and metabolic detoxification function in mice via p38MAPK/NF-κB/NLRP3 pathway\",\"authors\":\"Yuanyuan Wei, Danyang Ma, Yimeng Fan, Chen Gao, Qingtao Wang, Yanmeng Yuan, Yan-nan Zhang, J. Han, Zhihui Hao\",\"doi\":\"10.1080/09540105.2022.2060192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We investigated the effects of carbon tetrachloride (CCl4) exposure on liver detoxification. We confirmed that 0.2%-0.8% CCl4 decreased the liver carboxylesterase (CarE), lactate dehydrogenase (LDH) activity and total protein (TP) levels, while 0.2% and 0.8% CCl4 increased the liver acetylcholine esterase (AChE) activity (P< 0.05). It was observed0.4%-0.8% CCl4 increased serum glutathione S-transferase (GST) and catalase (CAT) activity, 0.1%-0.8% CCl4 increased the level of malondialdehyde (MDA), and 0.2% CCl4 increased the level of total superoxide dismutase (T-SOD). The expression of nod-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α) were significantly elevated in 0.2%-0.8% CCl4 exposure (P< 0.05). The expression of p38MAPK, gasdermin D (GSDMD), and nuclear factor kappa-B kinase (IKK) was decreased in 0.1%-0.8% CCl4 exposure, while the apoptosis was not statistically different in all groups. This indicates that 0.1% CCl4 exposure could damage the liver structure and detoxification function via p38MAPK/NF-κB/NLRP3 pathway. GRAPHICAL ABSTRACT\",\"PeriodicalId\":12300,\"journal\":{\"name\":\"Food and Agricultural Immunology\",\"volume\":\"33 1\",\"pages\":\"235 - 251\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Agricultural Immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/09540105.2022.2060192\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Agricultural Immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09540105.2022.2060192","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Environmental carbon tetrachloride exposure disrupts the liver structure and metabolic detoxification function in mice via p38MAPK/NF-κB/NLRP3 pathway
ABSTRACT We investigated the effects of carbon tetrachloride (CCl4) exposure on liver detoxification. We confirmed that 0.2%-0.8% CCl4 decreased the liver carboxylesterase (CarE), lactate dehydrogenase (LDH) activity and total protein (TP) levels, while 0.2% and 0.8% CCl4 increased the liver acetylcholine esterase (AChE) activity (P< 0.05). It was observed0.4%-0.8% CCl4 increased serum glutathione S-transferase (GST) and catalase (CAT) activity, 0.1%-0.8% CCl4 increased the level of malondialdehyde (MDA), and 0.2% CCl4 increased the level of total superoxide dismutase (T-SOD). The expression of nod-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α) were significantly elevated in 0.2%-0.8% CCl4 exposure (P< 0.05). The expression of p38MAPK, gasdermin D (GSDMD), and nuclear factor kappa-B kinase (IKK) was decreased in 0.1%-0.8% CCl4 exposure, while the apoptosis was not statistically different in all groups. This indicates that 0.1% CCl4 exposure could damage the liver structure and detoxification function via p38MAPK/NF-κB/NLRP3 pathway. GRAPHICAL ABSTRACT
期刊介绍:
Food and Agricultural Immunology is an international open access journal publishing original immunological research with applications in food, agricultural, environmental and veterinary science. Submissions describing the use of immunological techniques and methods are particularly welcomed.
The journal aims to expand our understanding of the interactions at the interface of food and immune systems including studies on:
-Development of diagnostic systems – all types of ligand-based assays, e.g. antibody, aptamer
-Application of ligand-based assays for the detection or identification of molecules of interest in food science, agricultural research, veterinary investigations and clinical systems relating to food allergy or sensitivity to agricultural chemicals
-Effects of food on the immune system
-Studies on allergy and allergic reactions
-Investigations into food allergies
-Development of allergen-free food systems
-Development of novel assay formats
-Applications of assay systems to the monitoring of food items in relation to safety and labelling
-Food quality issues, e.g. speciation, adulteration and contamination
-Comparisons between different analytical techniques
The journal publishes research and review articles and is essential reading for food scientists, immunologists and all those concerned with the interaction between food and immune systems.