Tasneem Mohammed, A. Nasreen, Yahya S. Alqahtani, I. Shaikh, S. Iqubal, Shaik Honey Fathima, A. Khan
{"title":"治疗活性杂环支架的绿色合成研究进展","authors":"Tasneem Mohammed, A. Nasreen, Yahya S. Alqahtani, I. Shaikh, S. Iqubal, Shaik Honey Fathima, A. Khan","doi":"10.1166/sam.2023.4477","DOIUrl":null,"url":null,"abstract":"Green chemistry lowers chemical hazards during chemical design, manufacture, and use. By using cleaner solvents, catalysts, and reaction conditions, this technique reduces environmental pollution and boosts atom economy and energy efficiency. Rapid industrialization and urbanization\n are causing significant harm to our environment by releasing a lot of dangerous and undesired chemicals, gases, or other pollutants. The secrets hidden in nature and its by-products must now be discovered by us in order to enhance the synthesis of physiologically significant moieties and foster\n its growth. Heterocyclic compounds and its derivatives exhibit various biological potential like anticancer, antimicrobial, anticonvulsant, analgesic, antitubercular, antiinflammatory and cardiovascular activities. This make them good candidates for future medication discovery and give them\n the potential to be an arsenal for treating diseases. This article provides an overview of the numerous environmentally friendly and green synthetic techniques used to create diverse physiologically significant heterocyclic scaffolds in the period 2002–2022. It is anticipated that this\n compilation of pertinent information will be of significance and practical value to chemists specializing in organic and pharmaceutical domains, potentially stimulating additional advancements in reaction development within this captivating area of study.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Therapeutically Active Heterocyclic Scaffolds: A Review\",\"authors\":\"Tasneem Mohammed, A. Nasreen, Yahya S. Alqahtani, I. Shaikh, S. Iqubal, Shaik Honey Fathima, A. Khan\",\"doi\":\"10.1166/sam.2023.4477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green chemistry lowers chemical hazards during chemical design, manufacture, and use. By using cleaner solvents, catalysts, and reaction conditions, this technique reduces environmental pollution and boosts atom economy and energy efficiency. Rapid industrialization and urbanization\\n are causing significant harm to our environment by releasing a lot of dangerous and undesired chemicals, gases, or other pollutants. The secrets hidden in nature and its by-products must now be discovered by us in order to enhance the synthesis of physiologically significant moieties and foster\\n its growth. Heterocyclic compounds and its derivatives exhibit various biological potential like anticancer, antimicrobial, anticonvulsant, analgesic, antitubercular, antiinflammatory and cardiovascular activities. This make them good candidates for future medication discovery and give them\\n the potential to be an arsenal for treating diseases. This article provides an overview of the numerous environmentally friendly and green synthetic techniques used to create diverse physiologically significant heterocyclic scaffolds in the period 2002–2022. It is anticipated that this\\n compilation of pertinent information will be of significance and practical value to chemists specializing in organic and pharmaceutical domains, potentially stimulating additional advancements in reaction development within this captivating area of study.\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2023.4477\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2023.4477","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green Synthesis of Therapeutically Active Heterocyclic Scaffolds: A Review
Green chemistry lowers chemical hazards during chemical design, manufacture, and use. By using cleaner solvents, catalysts, and reaction conditions, this technique reduces environmental pollution and boosts atom economy and energy efficiency. Rapid industrialization and urbanization
are causing significant harm to our environment by releasing a lot of dangerous and undesired chemicals, gases, or other pollutants. The secrets hidden in nature and its by-products must now be discovered by us in order to enhance the synthesis of physiologically significant moieties and foster
its growth. Heterocyclic compounds and its derivatives exhibit various biological potential like anticancer, antimicrobial, anticonvulsant, analgesic, antitubercular, antiinflammatory and cardiovascular activities. This make them good candidates for future medication discovery and give them
the potential to be an arsenal for treating diseases. This article provides an overview of the numerous environmentally friendly and green synthetic techniques used to create diverse physiologically significant heterocyclic scaffolds in the period 2002–2022. It is anticipated that this
compilation of pertinent information will be of significance and practical value to chemists specializing in organic and pharmaceutical domains, potentially stimulating additional advancements in reaction development within this captivating area of study.