M. Amin, Hanif Ullah, Kaffayatullah Khan, Mudassir Iqbal
{"title":"碳纤维布加固钢筋混凝土梁的荷载-位移和刚度特性","authors":"M. Amin, Hanif Ullah, Kaffayatullah Khan, Mudassir Iqbal","doi":"10.1166/sam.2023.4468","DOIUrl":null,"url":null,"abstract":"In the current study, the efficiency of the carbon-fiber reinforced polymer (CFRP) strengthening technique is experimentally applied to reinforced concrete (RC) beams. In total, four types of test beam specimens are fabricated and tested, labeled as B-1, B-2, B-3, and B-4 for controlled\n specimens; the beams strengthened at high-level bending-moment regions, beams strengthened at bending-moment regions with enhanced development length, and U-wrapped shear plus flexural strengthened beams, respectively. The control specimens were fabricated under-reinforced in order\n to exhibit ductile failure according to ACI 318-08. The variation in the CFRP external configuration included a change in the bond length and use of U-shaped strips to limit the CFRP debonding. For strengthening the beams, Sika group CFRP was used in this study. The test specimens were\n subjected to three-point loading following seven days of strengthening. The test result includes failure modes, load displacement curves, and stiffness degradation. The proposed CFRP strengthening configuration of the RC beams (B-2, B-3, and B-4) demonstrated improved behavior of their load\n response as compared to that of control beam (B-1). The CFRP configuration used of RC beam B-4 exhibited almost double flexural strength to that of control beam B-1. Moreover, the deformability of the CFRP strengthened RC beams was also increased.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Load-Displacement and Stiffness Characteristics of Carbon-Fiber Reinforced Polymer (CFRP) Strengthened Reinforced Concrete Beams\",\"authors\":\"M. Amin, Hanif Ullah, Kaffayatullah Khan, Mudassir Iqbal\",\"doi\":\"10.1166/sam.2023.4468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, the efficiency of the carbon-fiber reinforced polymer (CFRP) strengthening technique is experimentally applied to reinforced concrete (RC) beams. In total, four types of test beam specimens are fabricated and tested, labeled as B-1, B-2, B-3, and B-4 for controlled\\n specimens; the beams strengthened at high-level bending-moment regions, beams strengthened at bending-moment regions with enhanced development length, and U-wrapped shear plus flexural strengthened beams, respectively. The control specimens were fabricated under-reinforced in order\\n to exhibit ductile failure according to ACI 318-08. The variation in the CFRP external configuration included a change in the bond length and use of U-shaped strips to limit the CFRP debonding. For strengthening the beams, Sika group CFRP was used in this study. The test specimens were\\n subjected to three-point loading following seven days of strengthening. The test result includes failure modes, load displacement curves, and stiffness degradation. The proposed CFRP strengthening configuration of the RC beams (B-2, B-3, and B-4) demonstrated improved behavior of their load\\n response as compared to that of control beam (B-1). The CFRP configuration used of RC beam B-4 exhibited almost double flexural strength to that of control beam B-1. Moreover, the deformability of the CFRP strengthened RC beams was also increased.\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2023.4468\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2023.4468","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load-Displacement and Stiffness Characteristics of Carbon-Fiber Reinforced Polymer (CFRP) Strengthened Reinforced Concrete Beams
In the current study, the efficiency of the carbon-fiber reinforced polymer (CFRP) strengthening technique is experimentally applied to reinforced concrete (RC) beams. In total, four types of test beam specimens are fabricated and tested, labeled as B-1, B-2, B-3, and B-4 for controlled
specimens; the beams strengthened at high-level bending-moment regions, beams strengthened at bending-moment regions with enhanced development length, and U-wrapped shear plus flexural strengthened beams, respectively. The control specimens were fabricated under-reinforced in order
to exhibit ductile failure according to ACI 318-08. The variation in the CFRP external configuration included a change in the bond length and use of U-shaped strips to limit the CFRP debonding. For strengthening the beams, Sika group CFRP was used in this study. The test specimens were
subjected to three-point loading following seven days of strengthening. The test result includes failure modes, load displacement curves, and stiffness degradation. The proposed CFRP strengthening configuration of the RC beams (B-2, B-3, and B-4) demonstrated improved behavior of their load
response as compared to that of control beam (B-1). The CFRP configuration used of RC beam B-4 exhibited almost double flexural strength to that of control beam B-1. Moreover, the deformability of the CFRP strengthened RC beams was also increased.