{"title":"一种基于多重聚合酶链式反应检测加工肉制品中各种禽类肉类的新方法的设计","authors":"Negin Rajaei , Abbas Doosti","doi":"10.1016/j.fochms.2023.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from<!--> <!-->Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo<!--> <!-->meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome <em>b</em> genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"7 ","pages":"Article 100177"},"PeriodicalIF":4.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a novel method based on multiplex PCR for detecting various meat of birds in processed ground meat products\",\"authors\":\"Negin Rajaei , Abbas Doosti\",\"doi\":\"10.1016/j.fochms.2023.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from<!--> <!-->Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo<!--> <!-->meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome <em>b</em> genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"7 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566223000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566223000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Designing a novel method based on multiplex PCR for detecting various meat of birds in processed ground meat products
Falsified food directly influences wildlife, fair trade, religion, and the health of society. Here, we report a multiplex polymerase chain reaction to evaluate the accurate determination of seven species of bird meat in meals on a single assay platform. To amplify segments of DNA from Columba livia, Corvus moneduloides, Gallus gallus, Coturnix japonica, Phasianus colchicus, Struthio camelus, and Meleagris gallopavo meats, respectively, a total of seven sets of species-specific primers targeting the mitochondrial and cytochrome b genes were developed. Gel photographs and electrochromatography from an Experion Bioanalyzer were used to identify all PCR products. Species specificity checks discovered no cross-species amplification. The applicability of its screening to find target species in processed food was shown in commercial and model meatballs. A validation study revealed that the test is reliable, quick, affordable, repeatable, specific, and accurate down to 50,000 mitochondrial copies. It might be used for raw meats and products involving processed and severely deteriorated food samples. The customers, the food business, and law enforcement would all benefit immensely from this suggested approach.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.