{"title":"利用贝叶斯估计和SESSA模拟器对实测XPS数据进行样本结构预测","authors":"Hiroshi Shinotsuka , Kenji Nagata , Malinda Siriwardana , Hideki Yoshikawa , Hayaru Shouno , Masato Okada","doi":"10.1016/j.elspec.2023.147370","DOIUrl":null,"url":null,"abstract":"<div><p>We have developed a framework for solving the inverse problem of X-ray photoelectron spectroscopy (XPS) by incorporating an XPS simulator, Simulation of Electron Spectra for Surface Analysis (SESSA), into Bayesian estimation to obtain an overall picture of the distribution of plausible sample structures from the measured XPS data. The Bayesian estimation framework automated the very tedious task of adjusting the sample structure parameters manually in the simulator. As an example, we performed virtual experiments of angle-resolved XPS on a four-layered sample, and we estimated the sample structures based on the XPS intensity data obtained from experiments. We succeeded in not only obtaining an optimal solution, but also visualizing the distribution of the solution through the Bayesian posterior probability distribution.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147370"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample structure prediction from measured XPS data using Bayesian estimation and SESSA simulator\",\"authors\":\"Hiroshi Shinotsuka , Kenji Nagata , Malinda Siriwardana , Hideki Yoshikawa , Hayaru Shouno , Masato Okada\",\"doi\":\"10.1016/j.elspec.2023.147370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have developed a framework for solving the inverse problem of X-ray photoelectron spectroscopy (XPS) by incorporating an XPS simulator, Simulation of Electron Spectra for Surface Analysis (SESSA), into Bayesian estimation to obtain an overall picture of the distribution of plausible sample structures from the measured XPS data. The Bayesian estimation framework automated the very tedious task of adjusting the sample structure parameters manually in the simulator. As an example, we performed virtual experiments of angle-resolved XPS on a four-layered sample, and we estimated the sample structures based on the XPS intensity data obtained from experiments. We succeeded in not only obtaining an optimal solution, but also visualizing the distribution of the solution through the Bayesian posterior probability distribution.</p></div>\",\"PeriodicalId\":15726,\"journal\":{\"name\":\"Journal of Electron Spectroscopy and Related Phenomena\",\"volume\":\"267 \",\"pages\":\"Article 147370\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electron Spectroscopy and Related Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0368204823000877\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000877","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Sample structure prediction from measured XPS data using Bayesian estimation and SESSA simulator
We have developed a framework for solving the inverse problem of X-ray photoelectron spectroscopy (XPS) by incorporating an XPS simulator, Simulation of Electron Spectra for Surface Analysis (SESSA), into Bayesian estimation to obtain an overall picture of the distribution of plausible sample structures from the measured XPS data. The Bayesian estimation framework automated the very tedious task of adjusting the sample structure parameters manually in the simulator. As an example, we performed virtual experiments of angle-resolved XPS on a four-layered sample, and we estimated the sample structures based on the XPS intensity data obtained from experiments. We succeeded in not only obtaining an optimal solution, but also visualizing the distribution of the solution through the Bayesian posterior probability distribution.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.