两个耦合平面微通道板的同步辐射传输:控制焦斑特性的新机会

IF 2.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Journal of Synchrotron Radiation Pub Date : 2022-03-01 Epub Date: 2022-01-19 DOI:10.1107/S1600577521012893
M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov
{"title":"两个耦合平面微通道板的同步辐射传输:控制焦斑特性的新机会","authors":"M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov","doi":"10.1107/S1600577521012893","DOIUrl":null,"url":null,"abstract":"<p><p>An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synchrotron radiation transmission by two coupled flat microchannel plates: new opportunities to control the focal spot characteristics.\",\"authors\":\"M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov\",\"doi\":\"10.1107/S1600577521012893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577521012893\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577521012893","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

研究了同步辐射在组装的微通道板(MCP)出口处产生的透射特性和衍射图案。提出并讨论了一个理论模型来模拟这对MCP产生的软X射线束的模式和性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrotron radiation transmission by two coupled flat microchannel plates: new opportunities to control the focal spot characteristics.

An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
12.00%
发文量
289
审稿时长
4-8 weeks
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信