M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov
{"title":"两个耦合平面微通道板的同步辐射传输:控制焦斑特性的新机会","authors":"M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov","doi":"10.1107/S1600577521012893","DOIUrl":null,"url":null,"abstract":"<p><p>An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"355-362"},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synchrotron radiation transmission by two coupled flat microchannel plates: new opportunities to control the focal spot characteristics.\",\"authors\":\"M I Mazuritskiy, A M Lerer, A Marcelli, S B Dabagov\",\"doi\":\"10.1107/S1600577521012893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"29 1\",\"pages\":\"355-362\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577521012893\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577521012893","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Synchrotron radiation transmission by two coupled flat microchannel plates: new opportunities to control the focal spot characteristics.
An improved theoretical model to calculate the focal spot properties of coherent synchrotron radiation (SR) soft X-ray beams by combining and aligning two microchannel plates (MCPs) is presented. The diffraction patterns of the radiation behind the MCP system are simulated in the framework of the electrodynamical model of the radiation emission from two-dimensional finite antenna arrays. Simulations show that this particular optical device focuses the soft X-ray radiation in a circular central spot with a radius of ∼4 µm. The study points out that such MCP-based devices may achieve micrometre and sub-micrometre spot sizes as required by many applications in the soft X-ray range. Finally, based on experimental and theoretical results of the radiation transmission by this MCP-based device, a new method to characterize the spatial properties of brilliant SR sources is discussed.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.