KRISO集装箱船绿水发生的实验与数值研究

IF 1.3 4区 工程技术 Q3 ENGINEERING, CIVIL
K. R. Babu, Sri Vinay Krishna Rayudu Nelli, A. Bhattacharyya, R. Datta
{"title":"KRISO集装箱船绿水发生的实验与数值研究","authors":"K. R. Babu, Sri Vinay Krishna Rayudu Nelli, A. Bhattacharyya, R. Datta","doi":"10.5957/JOSR.08200049","DOIUrl":null,"url":null,"abstract":"The occurrence of green water on the deck of Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship is investigated using model test experiments and a fully coupled impulse response function (IRF)-computational fluid dynamics (CFD)-based numerical approach. In the experimental study, green water pressure over the deck and superstructure is investigated for different regular head wave conditions (wavelength/ship length ratio: .8-1.5) and vessel speeds (Froude number: .055-.166). The impact pressure on the deck is found to be highest at a wavelength/ship length ratio of 1.2 and increases drastically with the increase in Froude number. The variation of green water pressure with wave steepness is linear for points on the forward deck and quadratic for the superstructure. In the second part, a coupled IRF-CFD-based numerical method is developed in which the global hydrodynamic forces such as radiation-diffraction and Froude-Krylov force are computed using a potential flow solver, whereas the local pressure due to the shipping water impact is computed using CFD and added as an external force. Comparisons of vessel motions and green water pressures with experiments indicate that the coupled IRF-CFD method can be a robust and efficient tool to predict shipping water loads on ships.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental and Numerical Investigation of Green Water Occurrence for KRISO Container Ship\",\"authors\":\"K. R. Babu, Sri Vinay Krishna Rayudu Nelli, A. Bhattacharyya, R. Datta\",\"doi\":\"10.5957/JOSR.08200049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of green water on the deck of Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship is investigated using model test experiments and a fully coupled impulse response function (IRF)-computational fluid dynamics (CFD)-based numerical approach. In the experimental study, green water pressure over the deck and superstructure is investigated for different regular head wave conditions (wavelength/ship length ratio: .8-1.5) and vessel speeds (Froude number: .055-.166). The impact pressure on the deck is found to be highest at a wavelength/ship length ratio of 1.2 and increases drastically with the increase in Froude number. The variation of green water pressure with wave steepness is linear for points on the forward deck and quadratic for the superstructure. In the second part, a coupled IRF-CFD-based numerical method is developed in which the global hydrodynamic forces such as radiation-diffraction and Froude-Krylov force are computed using a potential flow solver, whereas the local pressure due to the shipping water impact is computed using CFD and added as an external force. Comparisons of vessel motions and green water pressures with experiments indicate that the coupled IRF-CFD method can be a robust and efficient tool to predict shipping water loads on ships.\",\"PeriodicalId\":50052,\"journal\":{\"name\":\"Journal of Ship Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JOSR.08200049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.08200049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

摘要

通过模型试验和基于全耦合脉冲响应函数(IRF)计算流体动力学(CFD)的数值方法,研究了韩国船舶与海洋工程研究所(KRISO)集装箱船甲板上绿水的发生。在实验研究中,研究了不同规则头波条件(波长/船长比:.8-1.5)和船舶速度(弗劳德数:.055-.166)下甲板和上部结构上的生水压力。发现在波长/船长比为1.2时,甲板上的冲击压力最高,并随着弗劳德值的增加而急剧增加。对于前甲板上的点来说,生水压力随波浪陡度的变化是线性的,对于上部结构来说是二次的。在第二部分中,开发了一种基于IRF CFD的耦合数值方法,其中使用势流求解器计算全局流体动力,如辐射衍射和Froud-Krylov力,而使用CFD计算航运水冲击引起的局部压力,并将其作为外力添加。船舶运动和生水压力与实验的比较表明,IRF-CFD耦合方法是预测船舶航运水荷载的一种稳健有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Numerical Investigation of Green Water Occurrence for KRISO Container Ship
The occurrence of green water on the deck of Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship is investigated using model test experiments and a fully coupled impulse response function (IRF)-computational fluid dynamics (CFD)-based numerical approach. In the experimental study, green water pressure over the deck and superstructure is investigated for different regular head wave conditions (wavelength/ship length ratio: .8-1.5) and vessel speeds (Froude number: .055-.166). The impact pressure on the deck is found to be highest at a wavelength/ship length ratio of 1.2 and increases drastically with the increase in Froude number. The variation of green water pressure with wave steepness is linear for points on the forward deck and quadratic for the superstructure. In the second part, a coupled IRF-CFD-based numerical method is developed in which the global hydrodynamic forces such as radiation-diffraction and Froude-Krylov force are computed using a potential flow solver, whereas the local pressure due to the shipping water impact is computed using CFD and added as an external force. Comparisons of vessel motions and green water pressures with experiments indicate that the coupled IRF-CFD method can be a robust and efficient tool to predict shipping water loads on ships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ship Research
Journal of Ship Research 工程技术-工程:海洋
CiteScore
2.80
自引率
0.00%
发文量
12
审稿时长
6 months
期刊介绍: Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信