Maria Psyridou, A. Tolvanen, Priyanka Patel, Daria Khanolainen, Marja‐Kristiina Lerkkanen, A. Poikkeus, M. Torppa
{"title":"阅读困难识别:神经网络、线性和混合模型的比较","authors":"Maria Psyridou, A. Tolvanen, Priyanka Patel, Daria Khanolainen, Marja‐Kristiina Lerkkanen, A. Poikkeus, M. Torppa","doi":"10.1080/10888438.2022.2095281","DOIUrl":null,"url":null,"abstract":"ABSTRACT Purpose We aim to identify the most accurate model for predicting adolescent (Grade 9) reading difficulties (RD) in reading fluency and reading comprehension using 17 kindergarten-age variables. Three models (neural networks, linear, and mixture) were compared based on their accuracy in predicting RD. We also examined whether the same or a different set of kindergarten-age factors emerge as the strongest predictors of reading fluency and comprehension difficulties across the models. Method RD were identified in a Finnish sample (N ≈ 2,000) based on Grade 9 difficulties in reading fluency and reading comprehension. The predictors assessed in kindergarten included gender, parental factors (e.g., parental RD, education level), cognitive skills (e.g., phonological awareness, RAN), home literacy environment, and task-avoidant behavior. Results The results suggested that the neural networks model is the most accurate method, as compared to the linear and mixture models or their combination, for the early prediction of adolescent reading fluency and reading comprehension difficulties. The three models elicited rather similar results regarding the predictors, highlighting the importance of RAN, letter knowledge, vocabulary, reading words, number counting, gender, and maternal education. Conclusion The results suggest that neural networks have strong promise in the field of reading research for the early identification of RD.","PeriodicalId":48032,"journal":{"name":"Scientific Studies of Reading","volume":"27 1","pages":"39 - 66"},"PeriodicalIF":2.9000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reading Difficulties Identification: A Comparison of Neural Networks, Linear, and Mixture Models\",\"authors\":\"Maria Psyridou, A. Tolvanen, Priyanka Patel, Daria Khanolainen, Marja‐Kristiina Lerkkanen, A. Poikkeus, M. Torppa\",\"doi\":\"10.1080/10888438.2022.2095281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Purpose We aim to identify the most accurate model for predicting adolescent (Grade 9) reading difficulties (RD) in reading fluency and reading comprehension using 17 kindergarten-age variables. Three models (neural networks, linear, and mixture) were compared based on their accuracy in predicting RD. We also examined whether the same or a different set of kindergarten-age factors emerge as the strongest predictors of reading fluency and comprehension difficulties across the models. Method RD were identified in a Finnish sample (N ≈ 2,000) based on Grade 9 difficulties in reading fluency and reading comprehension. The predictors assessed in kindergarten included gender, parental factors (e.g., parental RD, education level), cognitive skills (e.g., phonological awareness, RAN), home literacy environment, and task-avoidant behavior. Results The results suggested that the neural networks model is the most accurate method, as compared to the linear and mixture models or their combination, for the early prediction of adolescent reading fluency and reading comprehension difficulties. The three models elicited rather similar results regarding the predictors, highlighting the importance of RAN, letter knowledge, vocabulary, reading words, number counting, gender, and maternal education. Conclusion The results suggest that neural networks have strong promise in the field of reading research for the early identification of RD.\",\"PeriodicalId\":48032,\"journal\":{\"name\":\"Scientific Studies of Reading\",\"volume\":\"27 1\",\"pages\":\"39 - 66\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Studies of Reading\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/10888438.2022.2095281\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Studies of Reading","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/10888438.2022.2095281","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Reading Difficulties Identification: A Comparison of Neural Networks, Linear, and Mixture Models
ABSTRACT Purpose We aim to identify the most accurate model for predicting adolescent (Grade 9) reading difficulties (RD) in reading fluency and reading comprehension using 17 kindergarten-age variables. Three models (neural networks, linear, and mixture) were compared based on their accuracy in predicting RD. We also examined whether the same or a different set of kindergarten-age factors emerge as the strongest predictors of reading fluency and comprehension difficulties across the models. Method RD were identified in a Finnish sample (N ≈ 2,000) based on Grade 9 difficulties in reading fluency and reading comprehension. The predictors assessed in kindergarten included gender, parental factors (e.g., parental RD, education level), cognitive skills (e.g., phonological awareness, RAN), home literacy environment, and task-avoidant behavior. Results The results suggested that the neural networks model is the most accurate method, as compared to the linear and mixture models or their combination, for the early prediction of adolescent reading fluency and reading comprehension difficulties. The three models elicited rather similar results regarding the predictors, highlighting the importance of RAN, letter knowledge, vocabulary, reading words, number counting, gender, and maternal education. Conclusion The results suggest that neural networks have strong promise in the field of reading research for the early identification of RD.
期刊介绍:
This journal publishes original empirical investigations dealing with all aspects of reading and its related areas, and, occasionally, scholarly reviews of the literature, papers focused on theory development, and discussions of social policy issues. Papers range from very basic studies to those whose main thrust is toward educational practice. The journal also includes work on "all aspects of reading and its related areas," a phrase that is sufficiently general to encompass issues related to word recognition, comprehension, writing, intervention, and assessment involving very young children and/or adults.