气相中1-和9-氯蒽的离解电子附着

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nail L. Asfandiarov, Mars V. Muftakhov, Stanislav A. Pshenichnyuk
{"title":"气相中1-和9-氯蒽的离解电子附着","authors":"Nail L. Asfandiarov,&nbsp;Mars V. Muftakhov,&nbsp;Stanislav A. Pshenichnyuk","doi":"10.1016/j.elspec.2023.147383","DOIUrl":null,"url":null,"abstract":"<div><p><span>Dissociative electron attachment<span> (DEA) to 1-chloroanthracene and 9-chloroanthracene was investigated under gas-phase conditions. In both compounds, the elimination of the chlorine anion is the dominant channel for the dissociation of molecular negative ions (NIs). The second most intense channel leads to the formation of molecular anions (Mˉ). The autodetachment lifetime of Mˉ was measured to be about 170 μs for both compounds. The widths of the Mˉ peaks indicate that molecular anions are formed via two resonances: at thermal </span></span>electron energies<span><span> and through a shape resonance at the energy of ∼0.5 eV. Adiabatic electron affinities were estimated in the framework of the simple Arrhenius model to be 0.86 eV for both molecules, the values being close to the theoretical predictions by </span>DFT method of 0.90 eV and 0.93 eV for 1-chloroanthracene and 9-chloroanthracene respectively. Metastable negative ions are observed in the DEA spectra of both molecules, which testifies that the elimination of chlorine anions from molecular NIs appears on a time scale of several microseconds.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissociative electron attachment to 1- and 9-chloroanthracene in the gas phase\",\"authors\":\"Nail L. Asfandiarov,&nbsp;Mars V. Muftakhov,&nbsp;Stanislav A. Pshenichnyuk\",\"doi\":\"10.1016/j.elspec.2023.147383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Dissociative electron attachment<span> (DEA) to 1-chloroanthracene and 9-chloroanthracene was investigated under gas-phase conditions. In both compounds, the elimination of the chlorine anion is the dominant channel for the dissociation of molecular negative ions (NIs). The second most intense channel leads to the formation of molecular anions (Mˉ). The autodetachment lifetime of Mˉ was measured to be about 170 μs for both compounds. The widths of the Mˉ peaks indicate that molecular anions are formed via two resonances: at thermal </span></span>electron energies<span><span> and through a shape resonance at the energy of ∼0.5 eV. Adiabatic electron affinities were estimated in the framework of the simple Arrhenius model to be 0.86 eV for both molecules, the values being close to the theoretical predictions by </span>DFT method of 0.90 eV and 0.93 eV for 1-chloroanthracene and 9-chloroanthracene respectively. Metastable negative ions are observed in the DEA spectra of both molecules, which testifies that the elimination of chlorine anions from molecular NIs appears on a time scale of several microseconds.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0368204823001007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823001007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在气相条件下研究了1-氯蒽和9-氯蒽的解离电子附着。在这两种化合物中,氯阴离子的消除是分子负离子(NIs)解离的主要通道。第二强通道导致分子阴离子(M - h)的形成。两种化合物的自脱离寿命均约为170 μs。M - h峰的宽度表明分子阴离子是通过两种共振形成的:热电子能共振和约0.5 eV的形状共振。在简单Arrhenius模型框架下,两种分子的绝热电子亲和值分别为0.86 eV,接近DFT方法对1-氯蒽和9-氯蒽的理论预测值0.90 eV和0.93 eV。在两种分子的DEA光谱中都观察到亚稳态负离子,这证明了氯阴离子在几微秒的时间尺度上从NIs分子中消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissociative electron attachment to 1- and 9-chloroanthracene in the gas phase

Dissociative electron attachment (DEA) to 1-chloroanthracene and 9-chloroanthracene was investigated under gas-phase conditions. In both compounds, the elimination of the chlorine anion is the dominant channel for the dissociation of molecular negative ions (NIs). The second most intense channel leads to the formation of molecular anions (Mˉ). The autodetachment lifetime of Mˉ was measured to be about 170 μs for both compounds. The widths of the Mˉ peaks indicate that molecular anions are formed via two resonances: at thermal electron energies and through a shape resonance at the energy of ∼0.5 eV. Adiabatic electron affinities were estimated in the framework of the simple Arrhenius model to be 0.86 eV for both molecules, the values being close to the theoretical predictions by DFT method of 0.90 eV and 0.93 eV for 1-chloroanthracene and 9-chloroanthracene respectively. Metastable negative ions are observed in the DEA spectra of both molecules, which testifies that the elimination of chlorine anions from molecular NIs appears on a time scale of several microseconds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信