{"title":"淹没体后重力波的耗散格林函数建模方法","authors":"M. Fürth, M. Tan, Zhimin Chen, M. Arai","doi":"10.5957/JOSR.08170054","DOIUrl":null,"url":null,"abstract":"Potential flow-based methods are common in early design stages because of their associated speed and relative simplicity. By separating the resistance components of a ship into viscous and wave resistance, an inviscid method such as potential flow can be used for wave resistance determination. However, gravity waves are affected by viscosity and decay with time and distance. It has, therefore, long been assumed that the inclusion of a damping parameter in potential flow would better model the wave resistance. This article presents a Kelvin-Neumann dissipative potential flow model. A Rayleigh damping term is inserted into the Navier-Stokes equations to capture the decay of waves. A new 3D Green’s function based on the Havelock-Lunde formulation is derived by the use of a Fourier transform. An upper limit for the Rayleigh damping term is found by comparison with experiments and a possible improvement on conventional potential flow models for the wave making resistance prediction of a submerged ellipsoid is proposed.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"65 1","pages":"72-85"},"PeriodicalIF":1.3000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dissipative Green’s Function Approach to Modeling Gravity Waves behind Submerged Bodies\",\"authors\":\"M. Fürth, M. Tan, Zhimin Chen, M. Arai\",\"doi\":\"10.5957/JOSR.08170054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential flow-based methods are common in early design stages because of their associated speed and relative simplicity. By separating the resistance components of a ship into viscous and wave resistance, an inviscid method such as potential flow can be used for wave resistance determination. However, gravity waves are affected by viscosity and decay with time and distance. It has, therefore, long been assumed that the inclusion of a damping parameter in potential flow would better model the wave resistance. This article presents a Kelvin-Neumann dissipative potential flow model. A Rayleigh damping term is inserted into the Navier-Stokes equations to capture the decay of waves. A new 3D Green’s function based on the Havelock-Lunde formulation is derived by the use of a Fourier transform. An upper limit for the Rayleigh damping term is found by comparison with experiments and a possible improvement on conventional potential flow models for the wave making resistance prediction of a submerged ellipsoid is proposed.\",\"PeriodicalId\":50052,\"journal\":{\"name\":\"Journal of Ship Research\",\"volume\":\"65 1\",\"pages\":\"72-85\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JOSR.08170054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.08170054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A Dissipative Green’s Function Approach to Modeling Gravity Waves behind Submerged Bodies
Potential flow-based methods are common in early design stages because of their associated speed and relative simplicity. By separating the resistance components of a ship into viscous and wave resistance, an inviscid method such as potential flow can be used for wave resistance determination. However, gravity waves are affected by viscosity and decay with time and distance. It has, therefore, long been assumed that the inclusion of a damping parameter in potential flow would better model the wave resistance. This article presents a Kelvin-Neumann dissipative potential flow model. A Rayleigh damping term is inserted into the Navier-Stokes equations to capture the decay of waves. A new 3D Green’s function based on the Havelock-Lunde formulation is derived by the use of a Fourier transform. An upper limit for the Rayleigh damping term is found by comparison with experiments and a possible improvement on conventional potential flow models for the wave making resistance prediction of a submerged ellipsoid is proposed.
期刊介绍:
Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.