矩阵值\(L\!\log \!L\) -Orlicz势的Weyl定律和Connes积分公式

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Raphaël Ponge
{"title":"矩阵值\\(L\\!\\log \\!L\\) -Orlicz势的Weyl定律和Connes积分公式","authors":"Raphaël Ponge","doi":"10.1007/s11040-022-09422-9","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to the Birman-Schwinger principle, Weyl’s laws for Birman-Schwinger operators yields semiclassical Weyl’s laws for the corresponding Schrödinger operators. In a recent preprint Rozenblum established quite general Weyl’s laws for Birman-Schwinger operators associated with pseudodifferential operators of critical order and potentials that are product of <span>\\(L\\!\\log \\!L\\)</span>-Orlicz functions and Alfhors-regular measures supported on a submanifold. In this paper, we show that, for matrix-valued <span>\\(L\\!\\log \\!L\\)</span>-Orlicz potentials supported on the whole manifold, Rozenblum’s results are direct consequences of the Cwikel-type estimates on tori recently established by Sukochev–Zanin. As applications we obtain CLR-type inequalities and semiclassical Weyl’s laws for critical Schrödinger operators associated with matrix-valued <span>\\(L\\!\\log \\!L\\)</span>-Orlicz potentials. Finally, we explain how the Weyl’s laws of this paper imply a strong version of Connes’ integration formula for matrix-valued <span>\\(L\\!\\log \\!L\\)</span>-Orlicz potentials.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09422-9.pdf","citationCount":"5","resultStr":"{\"title\":\"Weyl’s Laws and Connes’ Integration Formulas for Matrix-Valued \\\\(L\\\\!\\\\log \\\\!L\\\\)-Orlicz Potentials\",\"authors\":\"Raphaël Ponge\",\"doi\":\"10.1007/s11040-022-09422-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thanks to the Birman-Schwinger principle, Weyl’s laws for Birman-Schwinger operators yields semiclassical Weyl’s laws for the corresponding Schrödinger operators. In a recent preprint Rozenblum established quite general Weyl’s laws for Birman-Schwinger operators associated with pseudodifferential operators of critical order and potentials that are product of <span>\\\\(L\\\\!\\\\log \\\\!L\\\\)</span>-Orlicz functions and Alfhors-regular measures supported on a submanifold. In this paper, we show that, for matrix-valued <span>\\\\(L\\\\!\\\\log \\\\!L\\\\)</span>-Orlicz potentials supported on the whole manifold, Rozenblum’s results are direct consequences of the Cwikel-type estimates on tori recently established by Sukochev–Zanin. As applications we obtain CLR-type inequalities and semiclassical Weyl’s laws for critical Schrödinger operators associated with matrix-valued <span>\\\\(L\\\\!\\\\log \\\\!L\\\\)</span>-Orlicz potentials. Finally, we explain how the Weyl’s laws of this paper imply a strong version of Connes’ integration formula for matrix-valued <span>\\\\(L\\\\!\\\\log \\\\!L\\\\)</span>-Orlicz potentials.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09422-9.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09422-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09422-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

由于Birman-Schwinger原理,针对Birman-Schwinger算子的Weyl定律产生了对应Schrödinger算子的半经典Weyl定律。在最近的一篇预印本中,Rozenblum建立了相当一般的Weyl定律,用于与临界阶伪微分算子和势相关联的Birman-Schwinger算子,这些算子是\(L\!\log \!L\) -Orlicz函数和alfors -正则测度在子流形上的乘积。在本文中,我们证明了,对于整个流形上支持的矩阵值\(L\!\log \!L\) -Orlicz势,Rozenblum的结果是sukochevv - zanin最近建立的环面上的cwikel型估计的直接结果。作为应用,我们得到了与矩阵值\(L\!\log \!L\) -Orlicz势相关的临界Schrödinger算子的clr型不等式和半经典Weyl定律。最后,我们解释了本文的Weyl定律如何暗示了矩阵值\(L\!\log \!L\) -Orlicz势的Connes积分公式的一个强版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weyl’s Laws and Connes’ Integration Formulas for Matrix-Valued \(L\!\log \!L\)-Orlicz Potentials

Thanks to the Birman-Schwinger principle, Weyl’s laws for Birman-Schwinger operators yields semiclassical Weyl’s laws for the corresponding Schrödinger operators. In a recent preprint Rozenblum established quite general Weyl’s laws for Birman-Schwinger operators associated with pseudodifferential operators of critical order and potentials that are product of \(L\!\log \!L\)-Orlicz functions and Alfhors-regular measures supported on a submanifold. In this paper, we show that, for matrix-valued \(L\!\log \!L\)-Orlicz potentials supported on the whole manifold, Rozenblum’s results are direct consequences of the Cwikel-type estimates on tori recently established by Sukochev–Zanin. As applications we obtain CLR-type inequalities and semiclassical Weyl’s laws for critical Schrödinger operators associated with matrix-valued \(L\!\log \!L\)-Orlicz potentials. Finally, we explain how the Weyl’s laws of this paper imply a strong version of Connes’ integration formula for matrix-valued \(L\!\log \!L\)-Orlicz potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信