Gross-Pitaevskii体系中捕获玻色子的最优速率玻色-爱因斯坦凝聚

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Christian Brennecke, Benjamin Schlein, Severin Schraven
{"title":"Gross-Pitaevskii体系中捕获玻色子的最优速率玻色-爱因斯坦凝聚","authors":"Christian Brennecke,&nbsp;Benjamin Schlein,&nbsp;Severin Schraven","doi":"10.1007/s11040-022-09424-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a Bose gas consisting of <i>N</i> particles in <span>\\({\\mathbb {R}}^3\\)</span>, trapped by an external field and interacting through a two-body potential with scattering length of order <span>\\(N^{-1}\\)</span>. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09424-7.pdf","citationCount":"22","resultStr":"{\"title\":\"Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime\",\"authors\":\"Christian Brennecke,&nbsp;Benjamin Schlein,&nbsp;Severin Schraven\",\"doi\":\"10.1007/s11040-022-09424-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a Bose gas consisting of <i>N</i> particles in <span>\\\\({\\\\mathbb {R}}^3\\\\)</span>, trapped by an external field and interacting through a two-body potential with scattering length of order <span>\\\\(N^{-1}\\\\)</span>. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09424-7.pdf\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09424-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09424-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 22

摘要

我们考虑了一种在\({\mathbb {R}}^3\)中由N个粒子组成的玻色气体,它们被外场捕获,并通过散射长度为\(N^{-1}\)阶的两体势相互作用。我们证明了低能态表现出最优速率的完全玻色-爱因斯坦凝聚,推广了Boccato等人的先前工作(普通数学物理359(3):975 - 1026,2018;[376:1311-1395, 2020],仅限于平移不变系统。这扩展了Nam等人最近的结果(预印本,2001年)。arXiv:2001.04364),去掉了对散射长度大小的小假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime

We consider a Bose gas consisting of N particles in \({\mathbb {R}}^3\), trapped by an external field and interacting through a two-body potential with scattering length of order \(N^{-1}\). We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信