{"title":"编织Hopf代数和规范变换II: \\(*\\) -结构和例子","authors":"Paolo Aschieri, Giovanni Landi, Chiara Pagani","doi":"10.1007/s11040-023-09454-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible <span>\\(*\\)</span>-structures, encompassing the quasitriangular case.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"26 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-023-09454-9.pdf","citationCount":"1","resultStr":"{\"title\":\"Braided Hopf Algebras and Gauge Transformations II: \\\\(*\\\\)-Structures and Examples\",\"authors\":\"Paolo Aschieri, Giovanni Landi, Chiara Pagani\",\"doi\":\"10.1007/s11040-023-09454-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible <span>\\\\(*\\\\)</span>-structures, encompassing the quasitriangular case.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-023-09454-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-023-09454-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09454-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Braided Hopf Algebras and Gauge Transformations II: \(*\)-Structures and Examples
We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible \(*\)-structures, encompassing the quasitriangular case.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.