编织Hopf代数和规范变换II: \(*\) -结构和例子

Pub Date : 2023-05-11 DOI:10.1007/s11040-023-09454-9
Paolo Aschieri, Giovanni Landi, Chiara Pagani
{"title":"编织Hopf代数和规范变换II: \\(*\\) -结构和例子","authors":"Paolo Aschieri,&nbsp;Giovanni Landi,&nbsp;Chiara Pagani","doi":"10.1007/s11040-023-09454-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible <span>\\(*\\)</span>-structures, encompassing the quasitriangular case.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-023-09454-9.pdf","citationCount":"1","resultStr":"{\"title\":\"Braided Hopf Algebras and Gauge Transformations II: \\\\(*\\\\)-Structures and Examples\",\"authors\":\"Paolo Aschieri,&nbsp;Giovanni Landi,&nbsp;Chiara Pagani\",\"doi\":\"10.1007/s11040-023-09454-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible <span>\\\\(*\\\\)</span>-structures, encompassing the quasitriangular case.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-023-09454-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-023-09454-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09454-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑一类三角Hopf代数下的等变非交换主束。给出了非交换球上束的无穷小规范变换的无限维编织Lie代数和Hopf代数的显式例子。这些代数的编织是通过对称Hopf代数的三角结构来实现的。我们提出了一个系统的分析相容\(*\) -结构,包括拟三角形的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Braided Hopf Algebras and Gauge Transformations II: \(*\)-Structures and Examples

We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible \(*\)-structures, encompassing the quasitriangular case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信