基于生物信息学的心肌肥大相关关键基因及分子机制探索

IF 0.9 4区 材料科学
P. Dai, Hang Wang, Xin Mu, Zhen Ren, Genli Liu, Longying Gao
{"title":"基于生物信息学的心肌肥大相关关键基因及分子机制探索","authors":"P. Dai, Hang Wang, Xin Mu, Zhen Ren, Genli Liu, Longying Gao","doi":"10.1166/sam.2023.4488","DOIUrl":null,"url":null,"abstract":"This study aimed to identify key genes and molecular mechanisms associated with cardiac hypertrophy using bioinformatics analysis. Datasets from the Gene Expression Omnibus (GEO) database were analyzed using the GEO2R tool to identify differentially expressed genes (DEGs) related to\n cardiac hypertrophy. The top 10 DEGs from two datasets (GSE18801 and GSE47420) were used to generate heatmaps and a volcano plot. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed using the DAVID website. The protein interaction data for DEGs were visualized\n using Cytoscape software. A total of 767 DEGs were identified in GSE18801 and 447 DEGs in GSE47420, with 48 common differential genes named co-DEGs. GO enrichment analysis suggested these co-DEGs were mostly related to extracellular matrix organization, muscle system process, and tissue remodeling.\n KEGG pathway analysis demonstrated co-DEGs were related to malaria, estrogen signaling pathway, ECM-receptor interaction, and apelin signaling pathway. Eight hub genes were identified, including Fn1, Fbn1, Dcn, Ctgf, Timp1, Lox, Tlr4, and Lcn2. These hub genes might serve as therapeutic potential\n biomarkers of cardiac hypertrophy.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Key Genes and Molecular Mechanisms Related to Myocardial Hypertrophy Based on Bioinformatics\",\"authors\":\"P. Dai, Hang Wang, Xin Mu, Zhen Ren, Genli Liu, Longying Gao\",\"doi\":\"10.1166/sam.2023.4488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to identify key genes and molecular mechanisms associated with cardiac hypertrophy using bioinformatics analysis. Datasets from the Gene Expression Omnibus (GEO) database were analyzed using the GEO2R tool to identify differentially expressed genes (DEGs) related to\\n cardiac hypertrophy. The top 10 DEGs from two datasets (GSE18801 and GSE47420) were used to generate heatmaps and a volcano plot. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed using the DAVID website. The protein interaction data for DEGs were visualized\\n using Cytoscape software. A total of 767 DEGs were identified in GSE18801 and 447 DEGs in GSE47420, with 48 common differential genes named co-DEGs. GO enrichment analysis suggested these co-DEGs were mostly related to extracellular matrix organization, muscle system process, and tissue remodeling.\\n KEGG pathway analysis demonstrated co-DEGs were related to malaria, estrogen signaling pathway, ECM-receptor interaction, and apelin signaling pathway. Eight hub genes were identified, including Fn1, Fbn1, Dcn, Ctgf, Timp1, Lox, Tlr4, and Lcn2. These hub genes might serve as therapeutic potential\\n biomarkers of cardiac hypertrophy.\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2023.4488\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/sam.2023.4488","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过生物信息学分析确定与心肌肥大相关的关键基因和分子机制。使用GEO2R工具分析来自基因表达综合数据库(GEO)的数据集,以确定与心肌肥大相关的差异表达基因(DEG)。来自两个数据集(GSE18801和GSE47420)的前10个DEG用于生成热图和火山图。使用DAVID网站进行基因本体论和京都基因和基因组百科全书分析。使用Cytoscape软件对DEG的蛋白质相互作用数据进行可视化。在GSE18801中共鉴定出767个DEG,在GSE47420中鉴定出447个DEGs,其中48个共有差异基因被命名为co-DEGs。GO富集分析表明,这些共DEG主要与细胞外基质组织、肌肉系统过程和组织重塑有关。KEGG通路分析表明,co-DEGs与疟疾、雌激素信号通路、ECM受体相互作用和apelin信号通路有关。鉴定出8个枢纽基因,包括Fn1、Fbn1、Dcn、Ctgf、Timp1、Lox、Tlr4和Lcn2。这些中枢基因可能是心肌肥大的潜在治疗生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Key Genes and Molecular Mechanisms Related to Myocardial Hypertrophy Based on Bioinformatics
This study aimed to identify key genes and molecular mechanisms associated with cardiac hypertrophy using bioinformatics analysis. Datasets from the Gene Expression Omnibus (GEO) database were analyzed using the GEO2R tool to identify differentially expressed genes (DEGs) related to cardiac hypertrophy. The top 10 DEGs from two datasets (GSE18801 and GSE47420) were used to generate heatmaps and a volcano plot. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed using the DAVID website. The protein interaction data for DEGs were visualized using Cytoscape software. A total of 767 DEGs were identified in GSE18801 and 447 DEGs in GSE47420, with 48 common differential genes named co-DEGs. GO enrichment analysis suggested these co-DEGs were mostly related to extracellular matrix organization, muscle system process, and tissue remodeling. KEGG pathway analysis demonstrated co-DEGs were related to malaria, estrogen signaling pathway, ECM-receptor interaction, and apelin signaling pathway. Eight hub genes were identified, including Fn1, Fbn1, Dcn, Ctgf, Timp1, Lox, Tlr4, and Lcn2. These hub genes might serve as therapeutic potential biomarkers of cardiac hypertrophy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Advanced Materials
Science of Advanced Materials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
11.10%
发文量
98
审稿时长
4.4 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信