一种在计算随机存取存储器(SC-CRAM)中嵌入随机位生成和处理的随机计算方案

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Brandon R. Zink;Yang Lv;Masoud Zabihi;Husrev Cilasun;Sachin S. Sapatnekar;Ulya R. Karpuzcu;Marc D. Riedel;Jian-Ping Wang
{"title":"一种在计算随机存取存储器(SC-CRAM)中嵌入随机位生成和处理的随机计算方案","authors":"Brandon R. Zink;Yang Lv;Masoud Zabihi;Husrev Cilasun;Sachin S. Sapatnekar;Ulya R. Karpuzcu;Marc D. Riedel;Jian-Ping Wang","doi":"10.1109/JXCDC.2023.3266136","DOIUrl":null,"url":null,"abstract":"Stochastic computing (SC) has emerged as a promising solution for performing complex functions on large amounts of data to meet future computing demands. However, the hardware needed to generate random bit-streams using conventional CMOS-based technologies drastically increases the area and delay cost. Area costs can be reduced using spintronics-based random number generators (RNGs), and however, this will not alleviate the delay costs since stochastic bit generation is still performed separately from the computation. In this article, we present an SC method of embedding stochastic bit generation and processing in a computational random access memory (CRAM) array, which we refer to as SC-CRAM. We demonstrate that SC-CRAM is a resilient and low-cost method for image processing, Bayesian inference systems, and Bayesian belief networks.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10099030.pdf","citationCount":"2","resultStr":"{\"title\":\"A Stochastic Computing Scheme of Embedding Random Bit Generation and Processing in Computational Random Access Memory (SC-CRAM)\",\"authors\":\"Brandon R. Zink;Yang Lv;Masoud Zabihi;Husrev Cilasun;Sachin S. Sapatnekar;Ulya R. Karpuzcu;Marc D. Riedel;Jian-Ping Wang\",\"doi\":\"10.1109/JXCDC.2023.3266136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic computing (SC) has emerged as a promising solution for performing complex functions on large amounts of data to meet future computing demands. However, the hardware needed to generate random bit-streams using conventional CMOS-based technologies drastically increases the area and delay cost. Area costs can be reduced using spintronics-based random number generators (RNGs), and however, this will not alleviate the delay costs since stochastic bit generation is still performed separately from the computation. In this article, we present an SC method of embedding stochastic bit generation and processing in a computational random access memory (CRAM) array, which we refer to as SC-CRAM. We demonstrate that SC-CRAM is a resilient and low-cost method for image processing, Bayesian inference systems, and Bayesian belief networks.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/10138050/10099030.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10099030/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10099030/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

摘要

随机计算(SC)已经成为一种很有前途的解决方案,用于在大量数据上执行复杂函数,以满足未来的计算需求。然而,使用传统的基于cmos的技术生成随机比特流所需的硬件大大增加了面积和延迟成本。使用基于自旋电子学的随机数生成器(rng)可以减少面积成本,但是,这并不能减轻延迟成本,因为随机比特生成仍然与计算分开执行。在本文中,我们提出了一种在计算随机存取存储器(CRAM)阵列中嵌入随机位生成和处理的SC方法,我们称之为SC-CRAM。我们证明SC-CRAM是一种弹性和低成本的图像处理方法,贝叶斯推理系统和贝叶斯信念网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stochastic Computing Scheme of Embedding Random Bit Generation and Processing in Computational Random Access Memory (SC-CRAM)
Stochastic computing (SC) has emerged as a promising solution for performing complex functions on large amounts of data to meet future computing demands. However, the hardware needed to generate random bit-streams using conventional CMOS-based technologies drastically increases the area and delay cost. Area costs can be reduced using spintronics-based random number generators (RNGs), and however, this will not alleviate the delay costs since stochastic bit generation is still performed separately from the computation. In this article, we present an SC method of embedding stochastic bit generation and processing in a computational random access memory (CRAM) array, which we refer to as SC-CRAM. We demonstrate that SC-CRAM is a resilient and low-cost method for image processing, Bayesian inference systems, and Bayesian belief networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信