通过基于项目的学习培养数据科学家

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fernando Martinez-Plumed;José Hernández-Orallo
{"title":"通过基于项目的学习培养数据科学家","authors":"Fernando Martinez-Plumed;José Hernández-Orallo","doi":"10.1109/RITA.2023.3302954","DOIUrl":null,"url":null,"abstract":"The concepts of innovation, creativity, problem solving, effective communication, autonomy and critical thinking are at the core of becoming a good data scientist. Adapting to new technological resources and tools is also an important skill, which also builds on the curious and inquisitive nature associated with data science, and is fuelled by rapidly changing data science ecosystems in industry. In this regard, Project-based learning (PBL) has clear benefits for engaging students in data science courses. However, the exploratory character of data science projects, which do not start with a clear specification of what to do, but some data to analyse, pose some challenges to the application of PBL. Our aim is to improve students’ data science learning experiences and outcomes through the use of PBL. In this paper, we share our experiences with PBL and present an assessment rubric that focuses on value, innovation and narrative, which can be used as a scaffolding structure for data science courses. Our analysis of a PBL data science course at MSc level, together with data from student surveys, shows how the methodology and rubric align well with the exploratory nature of data science and the proactive, curious, and inquisitive skills required of data scientists.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training Data Scientists Through Project-Based Learning\",\"authors\":\"Fernando Martinez-Plumed;José Hernández-Orallo\",\"doi\":\"10.1109/RITA.2023.3302954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concepts of innovation, creativity, problem solving, effective communication, autonomy and critical thinking are at the core of becoming a good data scientist. Adapting to new technological resources and tools is also an important skill, which also builds on the curious and inquisitive nature associated with data science, and is fuelled by rapidly changing data science ecosystems in industry. In this regard, Project-based learning (PBL) has clear benefits for engaging students in data science courses. However, the exploratory character of data science projects, which do not start with a clear specification of what to do, but some data to analyse, pose some challenges to the application of PBL. Our aim is to improve students’ data science learning experiences and outcomes through the use of PBL. In this paper, we share our experiences with PBL and present an assessment rubric that focuses on value, innovation and narrative, which can be used as a scaffolding structure for data science courses. Our analysis of a PBL data science course at MSc level, together with data from student surveys, shows how the methodology and rubric align well with the exploratory nature of data science and the proactive, curious, and inquisitive skills required of data scientists.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10210370/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10210370/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

创新、创造力、解决问题、有效沟通、自主性和批判性思维是成为一名优秀数据科学家的核心。适应新的技术资源和工具也是一项重要技能,它也建立在与数据科学相关的好奇心和好奇心的基础上,并受到行业中快速变化的数据科学生态系统的推动。在这方面,基于项目的学习(PBL)对让学生参与数据科学课程有明显的好处。然而,数据科学项目的探索性特征对PBL的应用提出了一些挑战,这些项目一开始并没有明确说明要做什么,而是要分析一些数据。我们的目标是通过使用PBL来改善学生的数据科学学习体验和结果。在本文中,我们分享了PBL的经验,并提出了一个侧重于价值、创新和叙事的评估准则,该准则可作为数据科学课程的脚手架结构。我们对硕士级PBL数据科学课程的分析,以及学生调查的数据,表明了该方法和准则如何与数据科学的探索性以及数据科学家所需的主动、好奇和好奇的技能很好地一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Data Scientists Through Project-Based Learning
The concepts of innovation, creativity, problem solving, effective communication, autonomy and critical thinking are at the core of becoming a good data scientist. Adapting to new technological resources and tools is also an important skill, which also builds on the curious and inquisitive nature associated with data science, and is fuelled by rapidly changing data science ecosystems in industry. In this regard, Project-based learning (PBL) has clear benefits for engaging students in data science courses. However, the exploratory character of data science projects, which do not start with a clear specification of what to do, but some data to analyse, pose some challenges to the application of PBL. Our aim is to improve students’ data science learning experiences and outcomes through the use of PBL. In this paper, we share our experiences with PBL and present an assessment rubric that focuses on value, innovation and narrative, which can be used as a scaffolding structure for data science courses. Our analysis of a PBL data science course at MSc level, together with data from student surveys, shows how the methodology and rubric align well with the exploratory nature of data science and the proactive, curious, and inquisitive skills required of data scientists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信