稀疏SIR:最优速率和自适应估计

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Kai Tan, Lei Shi, Zhou Yu
{"title":"稀疏SIR:最优速率和自适应估计","authors":"Kai Tan, Lei Shi, Zhou Yu","doi":"10.1214/18-aos1791","DOIUrl":null,"url":null,"abstract":"Sliced inverse regression (SIR) is an innovative and effective method for sufficient dimension reduction and data visualization. Recently, an impressive range of penalized SIR methods has been proposed to estimate the central subspace in a sparse fashion. Nonetheless, few of them considered the sparse sufficient dimension reduction from a decision-theoretic point of view. To address this issue, we in this paper establish the minimax rates of convergence for estimating the sparse SIR directions under various commonly used loss functions in the literature of sufficient dimension reduction. We also discover the possible trade-off between statistical guarantee and computational performance for sparse SIR. We finally propose an adaptive estimation scheme for sparse SIR which is computationally tractable and rate optimal. Numerical studies are carried out to confirm the theoretical properties of our proposed methods.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"64-85"},"PeriodicalIF":3.2000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Sparse SIR: Optimal rates and adaptive estimation\",\"authors\":\"Kai Tan, Lei Shi, Zhou Yu\",\"doi\":\"10.1214/18-aos1791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sliced inverse regression (SIR) is an innovative and effective method for sufficient dimension reduction and data visualization. Recently, an impressive range of penalized SIR methods has been proposed to estimate the central subspace in a sparse fashion. Nonetheless, few of them considered the sparse sufficient dimension reduction from a decision-theoretic point of view. To address this issue, we in this paper establish the minimax rates of convergence for estimating the sparse SIR directions under various commonly used loss functions in the literature of sufficient dimension reduction. We also discover the possible trade-off between statistical guarantee and computational performance for sparse SIR. We finally propose an adaptive estimation scheme for sparse SIR which is computationally tractable and rate optimal. Numerical studies are carried out to confirm the theoretical properties of our proposed methods.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"64-85\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-aos1791\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-aos1791","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 17

摘要

切片逆回归(SIR)是实现充分降维和数据可视化的一种创新而有效的方法。最近,人们提出了一系列令人印象深刻的惩罚SIR方法,以稀疏方式估计中心子空间。然而,很少有人从决策理论的角度考虑稀疏充分降维问题。为了解决这一问题,本文建立了文献中各种常用损失函数在充分降维下估计稀疏SIR方向的极小极大收敛率。我们还发现了稀疏SIR的统计保证和计算性能之间可能存在的权衡。最后,我们提出了一种计算易于处理且速率最优的稀疏SIR自适应估计方案。数值研究证实了我们提出的方法的理论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse SIR: Optimal rates and adaptive estimation
Sliced inverse regression (SIR) is an innovative and effective method for sufficient dimension reduction and data visualization. Recently, an impressive range of penalized SIR methods has been proposed to estimate the central subspace in a sparse fashion. Nonetheless, few of them considered the sparse sufficient dimension reduction from a decision-theoretic point of view. To address this issue, we in this paper establish the minimax rates of convergence for estimating the sparse SIR directions under various commonly used loss functions in the literature of sufficient dimension reduction. We also discover the possible trade-off between statistical guarantee and computational performance for sparse SIR. We finally propose an adaptive estimation scheme for sparse SIR which is computationally tractable and rate optimal. Numerical studies are carried out to confirm the theoretical properties of our proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信