{"title":"埃塞俄比亚西部巴科以谷物为基础的农业系统中的长期大豆-玉米轮作试验","authors":"Alemayehu Dabessa, Chala Debala","doi":"10.1002/fes3.496","DOIUrl":null,"url":null,"abstract":"<p>Maize monoculture is one of the major restrictions limiting maize productivity in Western Ethiopia. Although the inclusion of legumes in cropping systems is an essential approach for the sustainable management of farming systems and for reducing the nitrogen (N) fertilizer requirement for maize production in the long term, the effects of soybean on the sustainability of maize productivity and soil fertility are unclear in Ethiopia. Continuous cropping of maize has led to extensive degradation of soil and a decrease in crop productivity in Western Ethiopia. Thus, the study was conducted to compare the long-term impact of soybean on the sustainability of the production system in soybean–maize rotation and to monitor soil fertility dynamics in soybean–maize rotational systems. Nine different soybean–maize rotation treatments were laid out in Randomized Complete Block Design (RCBD) with three replications. The study results showed that soybean–maize rotation gave a relatively steady yield compared to the maize mono-cropping system. Soybean–maize rotation improves the productivity of component crops in cropping systems. The highest maize grain yield was recorded from soybean–maize rotation with fertilizer application for the two components (RS + M+) and soybean–maize rotation without fertilizer application for the soybean component (RS-M+), respectively. Soybean grain yield was significantly correlated with OC (%), OM (%), and TN (%), whereas maize yield was adversely correlated with soil parameters, except soil pH. Overall, the knowledge we can contribute to the readers from this study is that soybean–maize rotation plays an important role in achieving sustainable agriculture by increasing soil fertility and achieving stable soybean and maize yields and soybean should be inoculated with Rhizobium strain year after year continuously. Thus, it can be concluded that soybean–maize rotation with fertilizer applications (RS + M+) for two components can be used in maize belt areas of Western Ethiopia.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"12 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.496","citationCount":"1","resultStr":"{\"title\":\"Long-term soybean–maize rotation experiments in cereal-based farming systems at Bako, Western Ethiopia\",\"authors\":\"Alemayehu Dabessa, Chala Debala\",\"doi\":\"10.1002/fes3.496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maize monoculture is one of the major restrictions limiting maize productivity in Western Ethiopia. Although the inclusion of legumes in cropping systems is an essential approach for the sustainable management of farming systems and for reducing the nitrogen (N) fertilizer requirement for maize production in the long term, the effects of soybean on the sustainability of maize productivity and soil fertility are unclear in Ethiopia. Continuous cropping of maize has led to extensive degradation of soil and a decrease in crop productivity in Western Ethiopia. Thus, the study was conducted to compare the long-term impact of soybean on the sustainability of the production system in soybean–maize rotation and to monitor soil fertility dynamics in soybean–maize rotational systems. Nine different soybean–maize rotation treatments were laid out in Randomized Complete Block Design (RCBD) with three replications. The study results showed that soybean–maize rotation gave a relatively steady yield compared to the maize mono-cropping system. Soybean–maize rotation improves the productivity of component crops in cropping systems. The highest maize grain yield was recorded from soybean–maize rotation with fertilizer application for the two components (RS + M+) and soybean–maize rotation without fertilizer application for the soybean component (RS-M+), respectively. Soybean grain yield was significantly correlated with OC (%), OM (%), and TN (%), whereas maize yield was adversely correlated with soil parameters, except soil pH. Overall, the knowledge we can contribute to the readers from this study is that soybean–maize rotation plays an important role in achieving sustainable agriculture by increasing soil fertility and achieving stable soybean and maize yields and soybean should be inoculated with Rhizobium strain year after year continuously. Thus, it can be concluded that soybean–maize rotation with fertilizer applications (RS + M+) for two components can be used in maize belt areas of Western Ethiopia.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.496\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.496\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.496","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Long-term soybean–maize rotation experiments in cereal-based farming systems at Bako, Western Ethiopia
Maize monoculture is one of the major restrictions limiting maize productivity in Western Ethiopia. Although the inclusion of legumes in cropping systems is an essential approach for the sustainable management of farming systems and for reducing the nitrogen (N) fertilizer requirement for maize production in the long term, the effects of soybean on the sustainability of maize productivity and soil fertility are unclear in Ethiopia. Continuous cropping of maize has led to extensive degradation of soil and a decrease in crop productivity in Western Ethiopia. Thus, the study was conducted to compare the long-term impact of soybean on the sustainability of the production system in soybean–maize rotation and to monitor soil fertility dynamics in soybean–maize rotational systems. Nine different soybean–maize rotation treatments were laid out in Randomized Complete Block Design (RCBD) with three replications. The study results showed that soybean–maize rotation gave a relatively steady yield compared to the maize mono-cropping system. Soybean–maize rotation improves the productivity of component crops in cropping systems. The highest maize grain yield was recorded from soybean–maize rotation with fertilizer application for the two components (RS + M+) and soybean–maize rotation without fertilizer application for the soybean component (RS-M+), respectively. Soybean grain yield was significantly correlated with OC (%), OM (%), and TN (%), whereas maize yield was adversely correlated with soil parameters, except soil pH. Overall, the knowledge we can contribute to the readers from this study is that soybean–maize rotation plays an important role in achieving sustainable agriculture by increasing soil fertility and achieving stable soybean and maize yields and soybean should be inoculated with Rhizobium strain year after year continuously. Thus, it can be concluded that soybean–maize rotation with fertilizer applications (RS + M+) for two components can be used in maize belt areas of Western Ethiopia.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology