{"title":"用Deift-Zhou方法求无限远处具有非零边界条件的聚焦Hirota方程的长时间渐近性","authors":"Shuyan Chen, Zhenya Yan, Boling Guo","doi":"10.1007/s11040-021-09388-0","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the long-time asymptotic behavior of the solution for the focusing Hirota equation (also called third-order nonlinear Schr?dinger equation) with symmetric, non-zero boundary conditions (NZBCs) at infinity. Firstly, based on the Lax pair with NZBCs, the direct and inverse scattering problems are used to establish the oscillatory Riemann-Hilbert (RH) problem with distinct jump curves. Secondly, the Deift-Zhou nonlinear steepest-descent method is employed to analyze the oscillatory RH problem such that the long-time asymptotic solutions are proposed in two distinct domains of space-time plane (i.e., the plane-wave and modulated elliptic-wave domains), respectively. Finally, the modulation instability of the considered Hirota equation is also investigated.</p>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"24 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11040-021-09388-0","citationCount":"8","resultStr":"{\"title\":\"Long-Time Asymptotics for the Focusing Hirota Equation with Non-Zero Boundary Conditions at Infinity Via the Deift-Zhou Approach\",\"authors\":\"Shuyan Chen, Zhenya Yan, Boling Guo\",\"doi\":\"10.1007/s11040-021-09388-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the long-time asymptotic behavior of the solution for the focusing Hirota equation (also called third-order nonlinear Schr?dinger equation) with symmetric, non-zero boundary conditions (NZBCs) at infinity. Firstly, based on the Lax pair with NZBCs, the direct and inverse scattering problems are used to establish the oscillatory Riemann-Hilbert (RH) problem with distinct jump curves. Secondly, the Deift-Zhou nonlinear steepest-descent method is employed to analyze the oscillatory RH problem such that the long-time asymptotic solutions are proposed in two distinct domains of space-time plane (i.e., the plane-wave and modulated elliptic-wave domains), respectively. Finally, the modulation instability of the considered Hirota equation is also investigated.</p>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11040-021-09388-0\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09388-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09388-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Long-Time Asymptotics for the Focusing Hirota Equation with Non-Zero Boundary Conditions at Infinity Via the Deift-Zhou Approach
We are concerned with the long-time asymptotic behavior of the solution for the focusing Hirota equation (also called third-order nonlinear Schr?dinger equation) with symmetric, non-zero boundary conditions (NZBCs) at infinity. Firstly, based on the Lax pair with NZBCs, the direct and inverse scattering problems are used to establish the oscillatory Riemann-Hilbert (RH) problem with distinct jump curves. Secondly, the Deift-Zhou nonlinear steepest-descent method is employed to analyze the oscillatory RH problem such that the long-time asymptotic solutions are proposed in two distinct domains of space-time plane (i.e., the plane-wave and modulated elliptic-wave domains), respectively. Finally, the modulation instability of the considered Hirota equation is also investigated.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.