“随学随走”(lago)研究分析。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
D. Nevo, J. Lok, D. Spiegelman
{"title":"“随学随走”(lago)研究分析。","authors":"D. Nevo, J. Lok, D. Spiegelman","doi":"10.1214/20-AOS1978","DOIUrl":null,"url":null,"abstract":"In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ANALYSIS OF \\\"LEARN-AS-YOU-GO\\\" (LAGO) STUDIES.\",\"authors\":\"D. Nevo, J. Lok, D. Spiegelman\",\"doi\":\"10.1214/20-AOS1978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2018-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-AOS1978\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOS1978","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

在“随做随学”(LAGO)适应性研究中,干预措施是一个复杂的多组件包,并且在研究过程中根据过去的结果数据分阶段进行调整。本设计正式确立了公共卫生干预研究的标准做法。寻求有效的干预方案,同时最小化干预方案的成本。在LAGO研究数据中,后期的干预取决于前阶段的结果,违反了标准的统计理论。我们建立了干预效应的估计量,并使用一个新的耦合参数证明了一致性和渐近正态性,从而保证了对没有总体干预效应假设的检验的有效性。我们建立了最优干预方案的置信集和不同干预方案组合下成功概率的置信带。我们在“更好的出生研究”中阐述了我们的方法,该研究旨在通过多组分干预方案改善印度北方邦157,689名新生儿的孕产妇和新生儿结局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF "LEARN-AS-YOU-GO" (LAGO) STUDIES.
In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信