轨道空间上的Frobenius歧管

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Zainab Al-Maamari, Yassir Dinar
{"title":"轨道空间上的Frobenius歧管","authors":"Zainab Al-Maamari,&nbsp;Yassir Dinar","doi":"10.1007/s11040-022-09434-5","DOIUrl":null,"url":null,"abstract":"<div><p>The orbits space of an irreducible linear representation of a finite group is a variety whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved that the orbits space of the standard reflection representation of an irreducible finite Coxeter group <span>\\({\\mathcal {W}}\\)</span> acquires a natural polynomial Frobenius manifold structure. We apply Dubrovin’s method on various orbits spaces of linear representations of finite groups. We find some of them has non or several natural Frobenius manifold structures. On the other hand, these Frobenius manifold structures include rational and trivial structures which are not known to be related to the invariant theory of finite groups.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09434-5.pdf","citationCount":"2","resultStr":"{\"title\":\"Frobenius Manifolds on Orbits Spaces\",\"authors\":\"Zainab Al-Maamari,&nbsp;Yassir Dinar\",\"doi\":\"10.1007/s11040-022-09434-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The orbits space of an irreducible linear representation of a finite group is a variety whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved that the orbits space of the standard reflection representation of an irreducible finite Coxeter group <span>\\\\({\\\\mathcal {W}}\\\\)</span> acquires a natural polynomial Frobenius manifold structure. We apply Dubrovin’s method on various orbits spaces of linear representations of finite groups. We find some of them has non or several natural Frobenius manifold structures. On the other hand, these Frobenius manifold structures include rational and trivial structures which are not known to be related to the invariant theory of finite groups.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09434-5.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09434-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09434-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

有限群的不可约线性表示的轨道空间是一个变量,其坐标环是不变多项式环。Boris Dubrovin证明了不可约有限Coxeter群\({\mathcal {W}}\)的标准反射表示的轨道空间获得一个自然多项式Frobenius流形结构。我们将杜布罗文方法应用于有限群线性表示的各种轨道空间。我们发现其中一些没有或有几个天然的弗罗本尼乌斯流形结构。另一方面,这些Frobenius流形结构包括与有限群不变理论无关的有理结构和平凡结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius Manifolds on Orbits Spaces

The orbits space of an irreducible linear representation of a finite group is a variety whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved that the orbits space of the standard reflection representation of an irreducible finite Coxeter group \({\mathcal {W}}\) acquires a natural polynomial Frobenius manifold structure. We apply Dubrovin’s method on various orbits spaces of linear representations of finite groups. We find some of them has non or several natural Frobenius manifold structures. On the other hand, these Frobenius manifold structures include rational and trivial structures which are not known to be related to the invariant theory of finite groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信