Martina Freisa, Thi Hong Nhung Dinh, David Bouville, Laurent Couraud, Isabelle Le Potier, Jean Gamby
{"title":"微热量计的制造及微流体热传感新测量方法","authors":"Martina Freisa, Thi Hong Nhung Dinh, David Bouville, Laurent Couraud, Isabelle Le Potier, Jean Gamby","doi":"10.1016/j.mne.2023.100222","DOIUrl":null,"url":null,"abstract":"<div><p>This work describes the integration of a Resistance Thermal Detector (RTD) microcalorimeter integrated into a 324 nL microfluidic channel. The sensor is fabricated in a clean room using photolithography and evaporation techniques, and it has a platinum serpentine with 60 windings. The RTDs undergo testing in the 30 to 45 °C temperature range, exhibiting great linearity and a sensitivity of 8.42 Ω/°C. Additionally, to perform the thermic measurement, we also provide a circuit architecture that ensures stability against external thermal fluctuations and the self-heating Joule effect. We showed that this measurement method allow us to achieve a precision of ±6.7·10<sup>−3</sup> °C, compared to ±0.178 °C total fluctuations found by using the traditional 2-wire method.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"20 ","pages":"Article 100222"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microcalorimeter fabrication and new measurement methodology for thermal sensing in microfluidics\",\"authors\":\"Martina Freisa, Thi Hong Nhung Dinh, David Bouville, Laurent Couraud, Isabelle Le Potier, Jean Gamby\",\"doi\":\"10.1016/j.mne.2023.100222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work describes the integration of a Resistance Thermal Detector (RTD) microcalorimeter integrated into a 324 nL microfluidic channel. The sensor is fabricated in a clean room using photolithography and evaporation techniques, and it has a platinum serpentine with 60 windings. The RTDs undergo testing in the 30 to 45 °C temperature range, exhibiting great linearity and a sensitivity of 8.42 Ω/°C. Additionally, to perform the thermic measurement, we also provide a circuit architecture that ensures stability against external thermal fluctuations and the self-heating Joule effect. We showed that this measurement method allow us to achieve a precision of ±6.7·10<sup>−3</sup> °C, compared to ±0.178 °C total fluctuations found by using the traditional 2-wire method.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"20 \",\"pages\":\"Article 100222\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007223000527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007223000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Microcalorimeter fabrication and new measurement methodology for thermal sensing in microfluidics
This work describes the integration of a Resistance Thermal Detector (RTD) microcalorimeter integrated into a 324 nL microfluidic channel. The sensor is fabricated in a clean room using photolithography and evaporation techniques, and it has a platinum serpentine with 60 windings. The RTDs undergo testing in the 30 to 45 °C temperature range, exhibiting great linearity and a sensitivity of 8.42 Ω/°C. Additionally, to perform the thermic measurement, we also provide a circuit architecture that ensures stability against external thermal fluctuations and the self-heating Joule effect. We showed that this measurement method allow us to achieve a precision of ±6.7·10−3 °C, compared to ±0.178 °C total fluctuations found by using the traditional 2-wire method.