磁电自旋轨道逻辑电路的物理模型

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hai Li;Dmitri E. Nikonov;Chia-Ching Lin;Kerem Camsari;Yu-Ching Liao;Chia-Sheng Hsu;Azad Naeemi;Ian A. Young
{"title":"磁电自旋轨道逻辑电路的物理模型","authors":"Hai Li;Dmitri E. Nikonov;Chia-Ching Lin;Kerem Camsari;Yu-Ching Liao;Chia-Sheng Hsu;Azad Naeemi;Ian A. Young","doi":"10.1109/JXCDC.2022.3143130","DOIUrl":null,"url":null,"abstract":"Spintronic devices provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. To accurately capture their multiphysics dynamics, a rigorous treatment of both spin and charge and their inter-conversion is required. Here, we present physics-based device models based on \n<inline-formula> <tex-math>$4\\times4$ </tex-math></inline-formula>\n matrices for the spin-orbit coupling (SOC) part of the magneto-electric spin-orbit (MESO) device. Also, a more rigorous physics model of ferroelectric and magnetoelectric (ME) switching of ferromagnets, based on Landau–Lifshitz–Gilbert (LLG) and Landau–Khalatnikov (LK) equations, are presented. With the combined model implemented in a SPICE circuit simulator environment, simulation results were obtained which show feasibility of the MESO implementation and the functional operation of buffers, synchronous oscillators, and majority gates.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9684158/09681806.pdf","citationCount":"3","resultStr":"{\"title\":\"Physics-Based Models for Magneto-Electric Spin-Orbit Logic Circuits\",\"authors\":\"Hai Li;Dmitri E. Nikonov;Chia-Ching Lin;Kerem Camsari;Yu-Ching Liao;Chia-Sheng Hsu;Azad Naeemi;Ian A. Young\",\"doi\":\"10.1109/JXCDC.2022.3143130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spintronic devices provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. To accurately capture their multiphysics dynamics, a rigorous treatment of both spin and charge and their inter-conversion is required. Here, we present physics-based device models based on \\n<inline-formula> <tex-math>$4\\\\times4$ </tex-math></inline-formula>\\n matrices for the spin-orbit coupling (SOC) part of the magneto-electric spin-orbit (MESO) device. Also, a more rigorous physics model of ferroelectric and magnetoelectric (ME) switching of ferromagnets, based on Landau–Lifshitz–Gilbert (LLG) and Landau–Khalatnikov (LK) equations, are presented. With the combined model implemented in a SPICE circuit simulator environment, simulation results were obtained which show feasibility of the MESO implementation and the functional operation of buffers, synchronous oscillators, and majority gates.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/9684158/09681806.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9681806/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9681806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

摘要

自旋电子器件提供了一个有前途的超越互补金属氧化物半导体(CMOS)器件的选择,由于它们的能量效率和与CMOS的兼容性。为了准确地捕捉它们的多物理场动力学,需要对自旋和电荷及其相互转换进行严格的处理。在这里,我们提出了基于$4\times4$矩阵的磁电自旋轨道(MESO)器件自旋轨道耦合(SOC)部分的物理器件模型。此外,基于Landau-Lifshitz-Gilbert (LLG)和Landau-Khalatnikov (LK)方程,提出了一个更严格的铁磁体铁电和磁电(ME)切换的物理模型。在SPICE电路仿真环境中实现了该组合模型,仿真结果表明了MESO实现的可行性以及缓冲器、同步振荡器和多数门的功能运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Based Models for Magneto-Electric Spin-Orbit Logic Circuits
Spintronic devices provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. To accurately capture their multiphysics dynamics, a rigorous treatment of both spin and charge and their inter-conversion is required. Here, we present physics-based device models based on $4\times4$ matrices for the spin-orbit coupling (SOC) part of the magneto-electric spin-orbit (MESO) device. Also, a more rigorous physics model of ferroelectric and magnetoelectric (ME) switching of ferromagnets, based on Landau–Lifshitz–Gilbert (LLG) and Landau–Khalatnikov (LK) equations, are presented. With the combined model implemented in a SPICE circuit simulator environment, simulation results were obtained which show feasibility of the MESO implementation and the functional operation of buffers, synchronous oscillators, and majority gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信