{"title":"基于几何图的两样本检验的渐近分布和检测阈值","authors":"B. Bhattacharya","doi":"10.1214/19-AOS1913","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of testing the equality of two multivariate distributions based on geometric graphs, constructed using the inter-point distances between the observations. These include the test based on the minimum spanning tree and the K-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent, and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the K-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic distribution and detection thresholds for two-sample tests based on geometric graphs\",\"authors\":\"B. Bhattacharya\",\"doi\":\"10.1214/19-AOS1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of testing the equality of two multivariate distributions based on geometric graphs, constructed using the inter-point distances between the observations. These include the test based on the minimum spanning tree and the K-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent, and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the K-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-AOS1913\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-AOS1913","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Asymptotic distribution and detection thresholds for two-sample tests based on geometric graphs
In this paper we consider the problem of testing the equality of two multivariate distributions based on geometric graphs, constructed using the inter-point distances between the observations. These include the test based on the minimum spanning tree and the K-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent, and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the K-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.