{"title":"语言学习中的纠错机制:个体建模","authors":"Adnane Ez-zizi, Dagmar Divjak, Petar Milin","doi":"10.1111/lang.12569","DOIUrl":null,"url":null,"abstract":"<p>Since its first adoption as a computational model for language learning, evidence has accumulated that Rescorla–Wagner error-correction learning (Rescorla & Wagner, 1972) captures several aspects of language processing. Whereas previous studies have provided general support for the Rescorla–Wagner rule by using it to explain the behavior of participants across a range of tasks, we focus on testing predictions generated by the model in a controlled natural language learning task and model the data at the level of the individual learner. By adjusting the parameters of the model to fit the trial-by-trial behavioral choices of participants, rather than fitting a one-for-all model using a single set of default parameters, we show that the model accurately captures participants’ choices, time latencies, and levels of response agreement. We also show that gender and working memory capacity affect the extent to which the Rescorla–Wagner model captures language learning.</p>","PeriodicalId":51371,"journal":{"name":"Language Learning","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/lang.12569","citationCount":"0","resultStr":"{\"title\":\"Error-Correction Mechanisms in Language Learning: Modeling Individuals\",\"authors\":\"Adnane Ez-zizi, Dagmar Divjak, Petar Milin\",\"doi\":\"10.1111/lang.12569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since its first adoption as a computational model for language learning, evidence has accumulated that Rescorla–Wagner error-correction learning (Rescorla & Wagner, 1972) captures several aspects of language processing. Whereas previous studies have provided general support for the Rescorla–Wagner rule by using it to explain the behavior of participants across a range of tasks, we focus on testing predictions generated by the model in a controlled natural language learning task and model the data at the level of the individual learner. By adjusting the parameters of the model to fit the trial-by-trial behavioral choices of participants, rather than fitting a one-for-all model using a single set of default parameters, we show that the model accurately captures participants’ choices, time latencies, and levels of response agreement. We also show that gender and working memory capacity affect the extent to which the Rescorla–Wagner model captures language learning.</p>\",\"PeriodicalId\":51371,\"journal\":{\"name\":\"Language Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/lang.12569\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Learning\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/lang.12569\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Learning","FirstCategoryId":"98","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/lang.12569","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Error-Correction Mechanisms in Language Learning: Modeling Individuals
Since its first adoption as a computational model for language learning, evidence has accumulated that Rescorla–Wagner error-correction learning (Rescorla & Wagner, 1972) captures several aspects of language processing. Whereas previous studies have provided general support for the Rescorla–Wagner rule by using it to explain the behavior of participants across a range of tasks, we focus on testing predictions generated by the model in a controlled natural language learning task and model the data at the level of the individual learner. By adjusting the parameters of the model to fit the trial-by-trial behavioral choices of participants, rather than fitting a one-for-all model using a single set of default parameters, we show that the model accurately captures participants’ choices, time latencies, and levels of response agreement. We also show that gender and working memory capacity affect the extent to which the Rescorla–Wagner model captures language learning.
期刊介绍:
Language Learning is a scientific journal dedicated to the understanding of language learning broadly defined. It publishes research articles that systematically apply methods of inquiry from disciplines including psychology, linguistics, cognitive science, educational inquiry, neuroscience, ethnography, sociolinguistics, sociology, and anthropology. It is concerned with fundamental theoretical issues in language learning such as child, second, and foreign language acquisition, language education, bilingualism, literacy, language representation in mind and brain, culture, cognition, pragmatics, and intergroup relations. A subscription includes one or two annual supplements, alternating among a volume from the Language Learning Cognitive Neuroscience Series, the Currents in Language Learning Series or the Language Learning Special Issue Series.