人工智能与人力资源管理的跨学科回顾:挑战与未来方向

IF 8.2 1区 管理学 Q1 MANAGEMENT
Yuan Pan , Fabian J. Froese
{"title":"人工智能与人力资源管理的跨学科回顾:挑战与未来方向","authors":"Yuan Pan ,&nbsp;Fabian J. Froese","doi":"10.1016/j.hrmr.2022.100924","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) has the potential to change the future of human resource management (HRM). Scholars from different disciplines have contributed to the field of AI in HRM but with rather insufficient cross-fertilization, thus leading to a fragmented body of knowledge. In response, we conducted a systematic, interdisciplinary review of 184 articles to provide a comprehensive overview. We grouped prior research into four categories based on discipline: management and economics, computer science, engineering and operations, and others. The findings reveal that studies in different disciplines had different research foci and utilized different methods. While studies in the technical disciplines tended to focus on the development of AI for specific HRM functions, studies from the other disciplines tended to focus on the consequences of AI on HRM, jobs, and labor markets. Most studies in all categories were relatively weak in theoretical development. We therefore offer recommendations for interdisciplinary collaborations, propose a unified definition of AI, and provide implications for research and practice.</p></div>","PeriodicalId":48145,"journal":{"name":"Human Resource Management Review","volume":"33 1","pages":"Article 100924"},"PeriodicalIF":8.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An interdisciplinary review of AI and HRM: Challenges and future directions\",\"authors\":\"Yuan Pan ,&nbsp;Fabian J. Froese\",\"doi\":\"10.1016/j.hrmr.2022.100924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence (AI) has the potential to change the future of human resource management (HRM). Scholars from different disciplines have contributed to the field of AI in HRM but with rather insufficient cross-fertilization, thus leading to a fragmented body of knowledge. In response, we conducted a systematic, interdisciplinary review of 184 articles to provide a comprehensive overview. We grouped prior research into four categories based on discipline: management and economics, computer science, engineering and operations, and others. The findings reveal that studies in different disciplines had different research foci and utilized different methods. While studies in the technical disciplines tended to focus on the development of AI for specific HRM functions, studies from the other disciplines tended to focus on the consequences of AI on HRM, jobs, and labor markets. Most studies in all categories were relatively weak in theoretical development. We therefore offer recommendations for interdisciplinary collaborations, propose a unified definition of AI, and provide implications for research and practice.</p></div>\",\"PeriodicalId\":48145,\"journal\":{\"name\":\"Human Resource Management Review\",\"volume\":\"33 1\",\"pages\":\"Article 100924\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Resource Management Review\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053482222000420\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Resource Management Review","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053482222000420","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 11

摘要

人工智能(AI)有可能改变人力资源管理(HRM)的未来。不同学科的学者对人工智能在人力资源管理领域的研究做出了贡献,但缺乏相互借鉴,导致知识体系碎片化。作为回应,我们对184篇文章进行了系统的、跨学科的综述,以提供一个全面的概述。我们根据学科将先前的研究分为四类:管理与经济学、计算机科学、工程与操作以及其他。研究结果表明,不同学科的研究重点不同,研究方法也不同。虽然技术学科的研究倾向于关注人工智能在特定人力资源管理功能方面的发展,但其他学科的研究倾向于关注人工智能对人力资源管理、就业和劳动力市场的影响。所有类别的研究大多在理论发展上相对薄弱。因此,我们为跨学科合作提供建议,提出人工智能的统一定义,并为研究和实践提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interdisciplinary review of AI and HRM: Challenges and future directions

Artificial intelligence (AI) has the potential to change the future of human resource management (HRM). Scholars from different disciplines have contributed to the field of AI in HRM but with rather insufficient cross-fertilization, thus leading to a fragmented body of knowledge. In response, we conducted a systematic, interdisciplinary review of 184 articles to provide a comprehensive overview. We grouped prior research into four categories based on discipline: management and economics, computer science, engineering and operations, and others. The findings reveal that studies in different disciplines had different research foci and utilized different methods. While studies in the technical disciplines tended to focus on the development of AI for specific HRM functions, studies from the other disciplines tended to focus on the consequences of AI on HRM, jobs, and labor markets. Most studies in all categories were relatively weak in theoretical development. We therefore offer recommendations for interdisciplinary collaborations, propose a unified definition of AI, and provide implications for research and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.20
自引率
7.00%
发文量
0
审稿时长
48 days
期刊介绍: The Human Resource Management Review (HRMR) is a quarterly academic journal dedicated to publishing scholarly conceptual and theoretical articles in the field of human resource management and related disciplines such as industrial/organizational psychology, human capital, labor relations, and organizational behavior. HRMR encourages manuscripts that address micro-, macro-, or multi-level phenomena concerning the function and processes of human resource management. The journal publishes articles that offer fresh insights to inspire future theory development and empirical research. Critical evaluations of existing concepts, theories, models, and frameworks are also encouraged, as well as quantitative meta-analytical reviews that contribute to conceptual and theoretical understanding. Subject areas appropriate for HRMR include (but are not limited to) Strategic Human Resource Management, International Human Resource Management, the nature and role of the human resource function in organizations, any specific Human Resource function or activity (e.g., Job Analysis, Job Design, Workforce Planning, Recruitment, Selection and Placement, Performance and Talent Management, Reward Systems, Training, Development, Careers, Safety and Health, Diversity, Fairness, Discrimination, Employment Law, Employee Relations, Labor Relations, Workforce Metrics, HR Analytics, HRM and Technology, Social issues and HRM, Separation and Retention), topics that influence or are influenced by human resource management activities (e.g., Climate, Culture, Change, Leadership and Power, Groups and Teams, Employee Attitudes and Behavior, Individual, team, and/or Organizational Performance), and HRM Research Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信