基于基本四边形的常平均曲率曲面

Pub Date : 2021-11-06 DOI:10.1007/s11040-021-09397-z
Alexander I. Bobenko, Sebastian Heller, Nick Schmitt
{"title":"基于基本四边形的常平均曲率曲面","authors":"Alexander I. Bobenko,&nbsp;Sebastian Heller,&nbsp;Nick Schmitt","doi":"10.1007/s11040-021-09397-z","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the construction of CMC surfaces with symmetries in <span>\\(\\mathbb {S}^{3}\\)</span> and <span>\\(\\mathbb {R}^{3}\\)</span> using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-021-09397-z.pdf","citationCount":"3","resultStr":"{\"title\":\"Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals\",\"authors\":\"Alexander I. Bobenko,&nbsp;Sebastian Heller,&nbsp;Nick Schmitt\",\"doi\":\"10.1007/s11040-021-09397-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe the construction of CMC surfaces with symmetries in <span>\\\\(\\\\mathbb {S}^{3}\\\\)</span> and <span>\\\\(\\\\mathbb {R}^{3}\\\\)</span> using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-021-09397-z.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09397-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09397-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们描述了在\(\mathbb {S}^{3}\)和\(\mathbb {R}^{3}\)中使用CMC四边形在空间镶嵌的基本四面体中具有对称性的CMC曲面的构造。基本块由广义魏尔斯特拉斯表示构造,利用势空间上的几何流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals

We describe the construction of CMC surfaces with symmetries in \(\mathbb {S}^{3}\) and \(\mathbb {R}^{3}\) using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信