Alexander I. Bobenko, Sebastian Heller, Nick Schmitt
{"title":"基于基本四边形的常平均曲率曲面","authors":"Alexander I. Bobenko, Sebastian Heller, Nick Schmitt","doi":"10.1007/s11040-021-09397-z","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the construction of CMC surfaces with symmetries in <span>\\(\\mathbb {S}^{3}\\)</span> and <span>\\(\\mathbb {R}^{3}\\)</span> using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-021-09397-z.pdf","citationCount":"3","resultStr":"{\"title\":\"Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals\",\"authors\":\"Alexander I. Bobenko, Sebastian Heller, Nick Schmitt\",\"doi\":\"10.1007/s11040-021-09397-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe the construction of CMC surfaces with symmetries in <span>\\\\(\\\\mathbb {S}^{3}\\\\)</span> and <span>\\\\(\\\\mathbb {R}^{3}\\\\)</span> using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-021-09397-z.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09397-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09397-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constant Mean Curvature Surfaces Based on Fundamental Quadrilaterals
We describe the construction of CMC surfaces with symmetries in \(\mathbb {S}^{3}\) and \(\mathbb {R}^{3}\) using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.