具有可动代数奇点的复微分方程的正则变换

Pub Date : 2022-03-06 DOI:10.1007/s11040-022-09417-6
Thomas Kecker, Galina Filipuk
{"title":"具有可动代数奇点的复微分方程的正则变换","authors":"Thomas Kecker,&nbsp;Galina Filipuk","doi":"10.1007/s11040-022-09417-6","DOIUrl":null,"url":null,"abstract":"<div><p>In a 1979 paper, Okamoto introduced the space of initial values for the six Painlevé equations and their associated Hamiltonian systems, showing that these define regular initial value problems at every point of an augmented phase space, a rational surface with certain exceptional divisors removed. We show that the construction of the space of initial values remains meaningful for certain classes of second-order complex differential equations, and more generally, Hamiltonian systems, where all movable singularities of all their solutions are algebraic poles (by some authors denoted the quasi-Painlevé property), which is a generalisation of the Painlevé property. The difference here is that the initial value problems obtained in the extended phase space become regular only after an additional change of dependent and independent variables. Constructing the analogue of space of initial values for these equations in this way also serves as an algorithm to single out, from a given class of equations or system of equations, those equations which are free from movable logarithmic branch points.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09417-6.pdf","citationCount":"4","resultStr":"{\"title\":\"Regularising Transformations for Complex Differential Equations with Movable Algebraic Singularities\",\"authors\":\"Thomas Kecker,&nbsp;Galina Filipuk\",\"doi\":\"10.1007/s11040-022-09417-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a 1979 paper, Okamoto introduced the space of initial values for the six Painlevé equations and their associated Hamiltonian systems, showing that these define regular initial value problems at every point of an augmented phase space, a rational surface with certain exceptional divisors removed. We show that the construction of the space of initial values remains meaningful for certain classes of second-order complex differential equations, and more generally, Hamiltonian systems, where all movable singularities of all their solutions are algebraic poles (by some authors denoted the quasi-Painlevé property), which is a generalisation of the Painlevé property. The difference here is that the initial value problems obtained in the extended phase space become regular only after an additional change of dependent and independent variables. Constructing the analogue of space of initial values for these equations in this way also serves as an algorithm to single out, from a given class of equations or system of equations, those equations which are free from movable logarithmic branch points.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09417-6.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09417-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09417-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在1979年的一篇论文中,Okamoto引入了六个painlev方程及其相关哈密顿系统的初值空间,证明了这些初值问题在增广相空间的每一点上都定义了正则初值问题,这是一个去除某些例外因子的有理曲面。我们证明了初值空间的构造对于某些类型的二阶复微分方程和更一般的hamilton系统仍然有意义,其中所有解的所有可动奇点都是代数极点(由一些作者表示为拟painlev性质),这是painlev性质的推广。这里的不同之处在于,在扩展相空间中得到的初值问题只有在附加了因变量和自变量的变化之后才变得正则化。用这种方法构造这些方程的初值空间模拟,也可以作为一种算法,从给定的一类方程或方程组中挑出那些没有可移动的对数分支点的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regularising Transformations for Complex Differential Equations with Movable Algebraic Singularities

In a 1979 paper, Okamoto introduced the space of initial values for the six Painlevé equations and their associated Hamiltonian systems, showing that these define regular initial value problems at every point of an augmented phase space, a rational surface with certain exceptional divisors removed. We show that the construction of the space of initial values remains meaningful for certain classes of second-order complex differential equations, and more generally, Hamiltonian systems, where all movable singularities of all their solutions are algebraic poles (by some authors denoted the quasi-Painlevé property), which is a generalisation of the Painlevé property. The difference here is that the initial value problems obtained in the extended phase space become regular only after an additional change of dependent and independent variables. Constructing the analogue of space of initial values for these equations in this way also serves as an algorithm to single out, from a given class of equations or system of equations, those equations which are free from movable logarithmic branch points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信