晶格规范理论与随机介质Ising模型

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Mikhail Skopenkov
{"title":"晶格规范理论与随机介质Ising模型","authors":"Mikhail Skopenkov","doi":"10.1007/s11040-022-09430-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study linearization of lattice gauge theory. Linearized theory approximates lattice gauge theory in the same manner as the loop O(n)-model approximates the spin O(n)-model. Under mild assumptions, we show that the expectation of an observable in linearized Abelian gauge theory coincides with the expectation in the Ising model with random edge-weights. We find a similar relation between Yang-Mills theory and 4-state Potts model. For the latter, we introduce a new observable.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"25 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09430-9.pdf","citationCount":"1","resultStr":"{\"title\":\"Lattice Gauge Theory and a Random-Medium Ising Model\",\"authors\":\"Mikhail Skopenkov\",\"doi\":\"10.1007/s11040-022-09430-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study linearization of lattice gauge theory. Linearized theory approximates lattice gauge theory in the same manner as the loop O(n)-model approximates the spin O(n)-model. Under mild assumptions, we show that the expectation of an observable in linearized Abelian gauge theory coincides with the expectation in the Ising model with random edge-weights. We find a similar relation between Yang-Mills theory and 4-state Potts model. For the latter, we introduce a new observable.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09430-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09430-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09430-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了晶格规范理论的线性化问题。线性化理论近似晶格规范理论的方式与O(n)环模型近似自旋O(n)模型的方式相同。在温和的假设下,我们证明了线性化阿贝尔规范理论中可观测值的期望与随机边权的Ising模型中的期望是一致的。我们发现杨-米尔斯理论与四态波茨模型之间有类似的关系。对于后者,我们引入了一个新的可观测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice Gauge Theory and a Random-Medium Ising Model

Lattice Gauge Theory and a Random-Medium Ising Model

We study linearization of lattice gauge theory. Linearized theory approximates lattice gauge theory in the same manner as the loop O(n)-model approximates the spin O(n)-model. Under mild assumptions, we show that the expectation of an observable in linearized Abelian gauge theory coincides with the expectation in the Ising model with random edge-weights. We find a similar relation between Yang-Mills theory and 4-state Potts model. For the latter, we introduce a new observable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信