量子球上的列维-西维塔联系

Pub Date : 2022-07-06 DOI:10.1007/s11040-022-09431-8
Joakim Arnlind, Kwalombota Ilwale, Giovanni Landi
{"title":"量子球上的列维-西维塔联系","authors":"Joakim Arnlind,&nbsp;Kwalombota Ilwale,&nbsp;Giovanni Landi","doi":"10.1007/s11040-022-09431-8","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce <i>q</i>-deformed connections on the quantum 2-sphere and 3-sphere, satisfying a twisted Leibniz rule in analogy with <i>q</i>-deformed derivations. We show that such connections always exist on projective modules. Furthermore, a condition for metric compatibility is introduced, and an explicit formula is given, parametrizing all metric connections on a free module. On the quantum 3-sphere, a <i>q</i>-deformed torsion freeness condition is introduced and we derive explicit expressions for the Christoffel symbols of a Levi–Civita connection for a general class of metrics. We also give metric connections on a class of projective modules over the quantum 2-sphere. Finally, we outline a generalization to any Hopf algebra with a (left) covariant calculus and associated quantum tangent space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09431-8.pdf","citationCount":"6","resultStr":"{\"title\":\"Levi–Civita Connections on Quantum Spheres\",\"authors\":\"Joakim Arnlind,&nbsp;Kwalombota Ilwale,&nbsp;Giovanni Landi\",\"doi\":\"10.1007/s11040-022-09431-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce <i>q</i>-deformed connections on the quantum 2-sphere and 3-sphere, satisfying a twisted Leibniz rule in analogy with <i>q</i>-deformed derivations. We show that such connections always exist on projective modules. Furthermore, a condition for metric compatibility is introduced, and an explicit formula is given, parametrizing all metric connections on a free module. On the quantum 3-sphere, a <i>q</i>-deformed torsion freeness condition is introduced and we derive explicit expressions for the Christoffel symbols of a Levi–Civita connection for a general class of metrics. We also give metric connections on a class of projective modules over the quantum 2-sphere. Finally, we outline a generalization to any Hopf algebra with a (left) covariant calculus and associated quantum tangent space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09431-8.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09431-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09431-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们在量子2球和3球上引入了q-变形的连接,与q-变形的导数类比,满足扭曲的莱布尼茨规则。我们证明了这种连接在投影模上总是存在的。进一步,引入了度量相容的一个条件,并给出了一个显式公式,用于参数化自由模上的所有度量连接。在量子3球上,引入了一个q变形的扭转自由条件,导出了一类一般度量的Levi-Civita连接的Christoffel符号的显式表达式。我们还给出了量子2球上一类射影模的度量连接。最后,我们概述了对任何具有(左)协变演算和相关量子切空间的Hopf代数的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Levi–Civita Connections on Quantum Spheres

分享
查看原文
Levi–Civita Connections on Quantum Spheres

We introduce q-deformed connections on the quantum 2-sphere and 3-sphere, satisfying a twisted Leibniz rule in analogy with q-deformed derivations. We show that such connections always exist on projective modules. Furthermore, a condition for metric compatibility is introduced, and an explicit formula is given, parametrizing all metric connections on a free module. On the quantum 3-sphere, a q-deformed torsion freeness condition is introduced and we derive explicit expressions for the Christoffel symbols of a Levi–Civita connection for a general class of metrics. We also give metric connections on a class of projective modules over the quantum 2-sphere. Finally, we outline a generalization to any Hopf algebra with a (left) covariant calculus and associated quantum tangent space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信