{"title":"评估社会研究中的计算思维","authors":"M. Manfra, Tom Hammond, Robert M. Coven","doi":"10.1080/00933104.2021.2003276","DOIUrl":null,"url":null,"abstract":"ABSTRACT Although computational thinking has most often been associated with the science, technology, engineering, and math education fields, our research takes a first step toward documenting student outcomes associated with integrating and assessing computational thinking in the social studies. In this study, we pursued an embedded research design, merging teacher action research with qualitative case study, into collaborative inquiry. Through analysis of classroom-based data, including samples of student work, we were able to develop an understanding of the manner with which student understanding of computational thinking emerged in this classroom. Findings suggest that, through the integration of carefully designed learner-centered tasks, students came to view computational thinking as computer mediated data analysis or an approach to analyzing data and solving problems. The iterative nature of the instructional design—three consecutive units built around the same heuristic of data-patterns-rules—as well as the variety of learning-centered tasks given to students, appeared to have enabled the teacher and students to have a common set of procedures for problem solving and a common language to articulate the goals and outcomes of data analysis and interpretation. Our study demonstrated that framing a lesson through the lens of computational thinking provides teachers with strategies for engaging students in a structured, yet authentic approach to grappling with complex problems relevant to the subject.","PeriodicalId":46808,"journal":{"name":"Theory and Research in Social Education","volume":"50 1","pages":"255 - 296"},"PeriodicalIF":2.5000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing computational thinking in the social studies\",\"authors\":\"M. Manfra, Tom Hammond, Robert M. Coven\",\"doi\":\"10.1080/00933104.2021.2003276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Although computational thinking has most often been associated with the science, technology, engineering, and math education fields, our research takes a first step toward documenting student outcomes associated with integrating and assessing computational thinking in the social studies. In this study, we pursued an embedded research design, merging teacher action research with qualitative case study, into collaborative inquiry. Through analysis of classroom-based data, including samples of student work, we were able to develop an understanding of the manner with which student understanding of computational thinking emerged in this classroom. Findings suggest that, through the integration of carefully designed learner-centered tasks, students came to view computational thinking as computer mediated data analysis or an approach to analyzing data and solving problems. The iterative nature of the instructional design—three consecutive units built around the same heuristic of data-patterns-rules—as well as the variety of learning-centered tasks given to students, appeared to have enabled the teacher and students to have a common set of procedures for problem solving and a common language to articulate the goals and outcomes of data analysis and interpretation. Our study demonstrated that framing a lesson through the lens of computational thinking provides teachers with strategies for engaging students in a structured, yet authentic approach to grappling with complex problems relevant to the subject.\",\"PeriodicalId\":46808,\"journal\":{\"name\":\"Theory and Research in Social Education\",\"volume\":\"50 1\",\"pages\":\"255 - 296\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Research in Social Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/00933104.2021.2003276\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Research in Social Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/00933104.2021.2003276","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Assessing computational thinking in the social studies
ABSTRACT Although computational thinking has most often been associated with the science, technology, engineering, and math education fields, our research takes a first step toward documenting student outcomes associated with integrating and assessing computational thinking in the social studies. In this study, we pursued an embedded research design, merging teacher action research with qualitative case study, into collaborative inquiry. Through analysis of classroom-based data, including samples of student work, we were able to develop an understanding of the manner with which student understanding of computational thinking emerged in this classroom. Findings suggest that, through the integration of carefully designed learner-centered tasks, students came to view computational thinking as computer mediated data analysis or an approach to analyzing data and solving problems. The iterative nature of the instructional design—three consecutive units built around the same heuristic of data-patterns-rules—as well as the variety of learning-centered tasks given to students, appeared to have enabled the teacher and students to have a common set of procedures for problem solving and a common language to articulate the goals and outcomes of data analysis and interpretation. Our study demonstrated that framing a lesson through the lens of computational thinking provides teachers with strategies for engaging students in a structured, yet authentic approach to grappling with complex problems relevant to the subject.