{"title":"指数2与离散可积系统的Halphen铅笔的对合","authors":"Kangning Wei","doi":"10.1007/s11040-022-09416-7","DOIUrl":null,"url":null,"abstract":"<div><p>We constructed involutions for a Halphen pencil of index 2, and proved that the birational mapping corresponding to the autonomous reduction of the elliptic Painlevé equation for the same pencil can be obtained as the composition of two such involutions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09416-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Involutions of Halphen Pencils of Index 2 and Discrete Integrable Systems\",\"authors\":\"Kangning Wei\",\"doi\":\"10.1007/s11040-022-09416-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We constructed involutions for a Halphen pencil of index 2, and proved that the birational mapping corresponding to the autonomous reduction of the elliptic Painlevé equation for the same pencil can be obtained as the composition of two such involutions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11040-022-09416-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-022-09416-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09416-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Involutions of Halphen Pencils of Index 2 and Discrete Integrable Systems
We constructed involutions for a Halphen pencil of index 2, and proved that the birational mapping corresponding to the autonomous reduction of the elliptic Painlevé equation for the same pencil can be obtained as the composition of two such involutions.