{"title":"羟基磷灰石纳米颗粒:在酸性培养基中替代传统磷肥","authors":"Masumeh Noruzi, Parvin Hadian, Leila Soleimanpour, Leila Ma’mani, Karim Shahbazi","doi":"10.1186/s40538-023-00437-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Traditional phosphorus fertilizers generally have low efficiencies due to their immobilization in soil, and a large part of these fertilizers are not plant-available. Also, phosphorus resources are non-renewable. In recent years, a great deal of attention has been paid to nanofertilizers because of their slow or controlled release and also their very small particle size which increases the solubility and uptake of nanoparticles in plant. Hydroxyapatite nanoparticles are of great importance as phosphorus nanofertilizer thanks to their very low toxicity, biocompatibility, and the fact that products obtained from their degradation, i.e., phosphate and calcium ions, are naturally available in soils.</p><h3>Results</h3><p>In this study, hydroxyapatite nanoparticles were synthesized using the wet chemical precipitation method in three formulations and characterized with various techniques including electron microscopy, atomic force microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and elemental analysis. Chemical and microscopic analyses showed that phosphorus was distributed in different parts of the wheat (<i>Triticum aestivum</i> L.) plant. To investigate the fertilizing effects of the nanoparticles, hydroxyapatite nanoparticles were used in different culture media including alkaline soil, acidic soil, the mixture of peat moss and perlite, and cocopeat. Based on our observations, hydroxyapatite nanoparticles showed fertilizing properties in all media. However, fertilizing potential strongly depended on the culture media. HAP nanoparticles demonstrated a high potential to be used as a fertilizer in acidic media. Nevertheless, only a slight fertilizing effect was observed in alkaline soils. Furthermore, the findings of our study showed fertilizing properties of powder hydroxyapatite nanoparticles without the need to convert them to suspension. Moreover, hydroxyapatite nanoparticles in all the three formulations showed low toxicity in such a way that their toxicity was even less than that of triple super phosphate.</p><h3>Conclusions</h3><p>Hydroxyapatite nanoparticles in both suspension and powder forms can be considered an alternative to conventional phosphorus fertilizers in acidic culture media. Our study revealed that hydroxyapatite nanoparticles were likely dissolved in the culture media and absorbed by plant mainly in the phosphate form.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"10 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00437-0","citationCount":"0","resultStr":"{\"title\":\"Hydroxyapatite nanoparticles: an alternative to conventional phosphorus fertilizers in acidic culture media\",\"authors\":\"Masumeh Noruzi, Parvin Hadian, Leila Soleimanpour, Leila Ma’mani, Karim Shahbazi\",\"doi\":\"10.1186/s40538-023-00437-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Traditional phosphorus fertilizers generally have low efficiencies due to their immobilization in soil, and a large part of these fertilizers are not plant-available. Also, phosphorus resources are non-renewable. In recent years, a great deal of attention has been paid to nanofertilizers because of their slow or controlled release and also their very small particle size which increases the solubility and uptake of nanoparticles in plant. Hydroxyapatite nanoparticles are of great importance as phosphorus nanofertilizer thanks to their very low toxicity, biocompatibility, and the fact that products obtained from their degradation, i.e., phosphate and calcium ions, are naturally available in soils.</p><h3>Results</h3><p>In this study, hydroxyapatite nanoparticles were synthesized using the wet chemical precipitation method in three formulations and characterized with various techniques including electron microscopy, atomic force microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and elemental analysis. Chemical and microscopic analyses showed that phosphorus was distributed in different parts of the wheat (<i>Triticum aestivum</i> L.) plant. To investigate the fertilizing effects of the nanoparticles, hydroxyapatite nanoparticles were used in different culture media including alkaline soil, acidic soil, the mixture of peat moss and perlite, and cocopeat. Based on our observations, hydroxyapatite nanoparticles showed fertilizing properties in all media. However, fertilizing potential strongly depended on the culture media. HAP nanoparticles demonstrated a high potential to be used as a fertilizer in acidic media. Nevertheless, only a slight fertilizing effect was observed in alkaline soils. Furthermore, the findings of our study showed fertilizing properties of powder hydroxyapatite nanoparticles without the need to convert them to suspension. Moreover, hydroxyapatite nanoparticles in all the three formulations showed low toxicity in such a way that their toxicity was even less than that of triple super phosphate.</p><h3>Conclusions</h3><p>Hydroxyapatite nanoparticles in both suspension and powder forms can be considered an alternative to conventional phosphorus fertilizers in acidic culture media. Our study revealed that hydroxyapatite nanoparticles were likely dissolved in the culture media and absorbed by plant mainly in the phosphate form.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00437-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-023-00437-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-023-00437-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydroxyapatite nanoparticles: an alternative to conventional phosphorus fertilizers in acidic culture media
Background
Traditional phosphorus fertilizers generally have low efficiencies due to their immobilization in soil, and a large part of these fertilizers are not plant-available. Also, phosphorus resources are non-renewable. In recent years, a great deal of attention has been paid to nanofertilizers because of their slow or controlled release and also their very small particle size which increases the solubility and uptake of nanoparticles in plant. Hydroxyapatite nanoparticles are of great importance as phosphorus nanofertilizer thanks to their very low toxicity, biocompatibility, and the fact that products obtained from their degradation, i.e., phosphate and calcium ions, are naturally available in soils.
Results
In this study, hydroxyapatite nanoparticles were synthesized using the wet chemical precipitation method in three formulations and characterized with various techniques including electron microscopy, atomic force microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and elemental analysis. Chemical and microscopic analyses showed that phosphorus was distributed in different parts of the wheat (Triticum aestivum L.) plant. To investigate the fertilizing effects of the nanoparticles, hydroxyapatite nanoparticles were used in different culture media including alkaline soil, acidic soil, the mixture of peat moss and perlite, and cocopeat. Based on our observations, hydroxyapatite nanoparticles showed fertilizing properties in all media. However, fertilizing potential strongly depended on the culture media. HAP nanoparticles demonstrated a high potential to be used as a fertilizer in acidic media. Nevertheless, only a slight fertilizing effect was observed in alkaline soils. Furthermore, the findings of our study showed fertilizing properties of powder hydroxyapatite nanoparticles without the need to convert them to suspension. Moreover, hydroxyapatite nanoparticles in all the three formulations showed low toxicity in such a way that their toxicity was even less than that of triple super phosphate.
Conclusions
Hydroxyapatite nanoparticles in both suspension and powder forms can be considered an alternative to conventional phosphorus fertilizers in acidic culture media. Our study revealed that hydroxyapatite nanoparticles were likely dissolved in the culture media and absorbed by plant mainly in the phosphate form.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.