{"title":"肌原纤维蛋白在低离子介质中的溶解策略(原型汤):高强度超声结合多酚的非共价或共价修饰对肌球蛋白分子组装的影响。","authors":"Chao Zhang, Ziyi Wang, Qian Liu, Qian Chen, Fangda Sun, Haotian Liu, Baohua Kong","doi":"10.1016/j.foodchem.2023.137701","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the effect of (−)-Epigallocatechin-3-gallate (EGCG) non-covalent/covalent grafting onto myofibrillar protein (MP) by high-intensity ultrasound (HIU) on its water-solubility and filament forming behavior. The results showed that the introduction of EGCG, especially in the case of covalent grafting, could inhibit the molecular assembly of myosin and improve the MP water solubility from 2.7% to 53.1% (<em>P</em> < 0.05). The HIU pretreatment provided more opportunities for EGCG grafting onto the ultrasound-treated protein (UMP) by disrupting the filamentous polymerization of myosin and thus further facilitated MP dissolution. Additionally, compared with the UMP-EGCG non-covalent complexes, the covalent complexes with a yellow appearance exhibited a higher absolute zeta potential (35.9 mV) and a lower particle size (53.7 μm) (<em>P</em> < 0.05). Overall, the combination of HIU pretreatment and EGCG covalent modification may provide a promising method for improving the solubility and processing properties of MP in low ionic media (prototype soup).</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"436 ","pages":"Article 137701"},"PeriodicalIF":8.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubilization strategy of myofibrillar proteins in low-ionic media (prototype soup): The effect of high-intensity ultrasound combined with non-covalent or covalent modification of polyphenols on myosin molecular assembly\",\"authors\":\"Chao Zhang, Ziyi Wang, Qian Liu, Qian Chen, Fangda Sun, Haotian Liu, Baohua Kong\",\"doi\":\"10.1016/j.foodchem.2023.137701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the effect of (−)-Epigallocatechin-3-gallate (EGCG) non-covalent/covalent grafting onto myofibrillar protein (MP) by high-intensity ultrasound (HIU) on its water-solubility and filament forming behavior. The results showed that the introduction of EGCG, especially in the case of covalent grafting, could inhibit the molecular assembly of myosin and improve the MP water solubility from 2.7% to 53.1% (<em>P</em> < 0.05). The HIU pretreatment provided more opportunities for EGCG grafting onto the ultrasound-treated protein (UMP) by disrupting the filamentous polymerization of myosin and thus further facilitated MP dissolution. Additionally, compared with the UMP-EGCG non-covalent complexes, the covalent complexes with a yellow appearance exhibited a higher absolute zeta potential (35.9 mV) and a lower particle size (53.7 μm) (<em>P</em> < 0.05). Overall, the combination of HIU pretreatment and EGCG covalent modification may provide a promising method for improving the solubility and processing properties of MP in low ionic media (prototype soup).</p></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"436 \",\"pages\":\"Article 137701\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814623023191\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814623023191","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Solubilization strategy of myofibrillar proteins in low-ionic media (prototype soup): The effect of high-intensity ultrasound combined with non-covalent or covalent modification of polyphenols on myosin molecular assembly
This study investigated the effect of (−)-Epigallocatechin-3-gallate (EGCG) non-covalent/covalent grafting onto myofibrillar protein (MP) by high-intensity ultrasound (HIU) on its water-solubility and filament forming behavior. The results showed that the introduction of EGCG, especially in the case of covalent grafting, could inhibit the molecular assembly of myosin and improve the MP water solubility from 2.7% to 53.1% (P < 0.05). The HIU pretreatment provided more opportunities for EGCG grafting onto the ultrasound-treated protein (UMP) by disrupting the filamentous polymerization of myosin and thus further facilitated MP dissolution. Additionally, compared with the UMP-EGCG non-covalent complexes, the covalent complexes with a yellow appearance exhibited a higher absolute zeta potential (35.9 mV) and a lower particle size (53.7 μm) (P < 0.05). Overall, the combination of HIU pretreatment and EGCG covalent modification may provide a promising method for improving the solubility and processing properties of MP in low ionic media (prototype soup).
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.