{"title":"基于CRISPR/Cas9基因组编辑的油菜籽下一代测序分析的可重复性","authors":"Steffen Pallarz , Stefan Fiedler , Daniela Wahler , Jörn Lämke , Lutz Grohmann","doi":"10.1016/j.fochms.2023.100182","DOIUrl":null,"url":null,"abstract":"<div><p>Next-generation-sequencing (NGS) becomes increasingly important for laboratories tasked with the detection of genetically modified organisms (GMOs) in food, feed and seeds. Its implementation into standardized workflows demands reliable intra- and inter-laboratory reproducibility. Here, we analyze the reproducibility of short- and long-read targeted NGS and long-read whole genome sequencing (WGS) data between three independent laboratories. Replicate samples were submitted for sequencing and comparatively analyzed. The targeted-NGS-samples consisted of oil seed rape (OSR) sampled from a commodity shipment spiked with a genome edited (GE) OSR and the WGS-samples consisted of leaf material from the GMOs’ parental line. All laboratories delivered highly reproducible high-quality targeted NGS data with little variation. The detection of GMO-related sequences works well regardless of the facility, while the mapping to the complex genome is superior using long read data. Long read WGS is currently not suitable for routine use in enforcement laboratories, due to a large inter-laboratory variation.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"7 ","pages":"Article 100182"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/36/bd/main.PMC10562171.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of next-generation-sequencing-based analysis of a CRISPR/Cas9 genome edited oil seed rape\",\"authors\":\"Steffen Pallarz , Stefan Fiedler , Daniela Wahler , Jörn Lämke , Lutz Grohmann\",\"doi\":\"10.1016/j.fochms.2023.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Next-generation-sequencing (NGS) becomes increasingly important for laboratories tasked with the detection of genetically modified organisms (GMOs) in food, feed and seeds. Its implementation into standardized workflows demands reliable intra- and inter-laboratory reproducibility. Here, we analyze the reproducibility of short- and long-read targeted NGS and long-read whole genome sequencing (WGS) data between three independent laboratories. Replicate samples were submitted for sequencing and comparatively analyzed. The targeted-NGS-samples consisted of oil seed rape (OSR) sampled from a commodity shipment spiked with a genome edited (GE) OSR and the WGS-samples consisted of leaf material from the GMOs’ parental line. All laboratories delivered highly reproducible high-quality targeted NGS data with little variation. The detection of GMO-related sequences works well regardless of the facility, while the mapping to the complex genome is superior using long read data. Long read WGS is currently not suitable for routine use in enforcement laboratories, due to a large inter-laboratory variation.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"7 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/36/bd/main.PMC10562171.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566223000229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566223000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Reproducibility of next-generation-sequencing-based analysis of a CRISPR/Cas9 genome edited oil seed rape
Next-generation-sequencing (NGS) becomes increasingly important for laboratories tasked with the detection of genetically modified organisms (GMOs) in food, feed and seeds. Its implementation into standardized workflows demands reliable intra- and inter-laboratory reproducibility. Here, we analyze the reproducibility of short- and long-read targeted NGS and long-read whole genome sequencing (WGS) data between three independent laboratories. Replicate samples were submitted for sequencing and comparatively analyzed. The targeted-NGS-samples consisted of oil seed rape (OSR) sampled from a commodity shipment spiked with a genome edited (GE) OSR and the WGS-samples consisted of leaf material from the GMOs’ parental line. All laboratories delivered highly reproducible high-quality targeted NGS data with little variation. The detection of GMO-related sequences works well regardless of the facility, while the mapping to the complex genome is superior using long read data. Long read WGS is currently not suitable for routine use in enforcement laboratories, due to a large inter-laboratory variation.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.