具有弹性血管壁的颈动脉中分数阶麦克斯韦幂律流体的周期性脉动血流分析。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yan Zhang, Yuan Peng, Jun Gao, Yu Bai, Dezhou Sun, Xiaopeng Sun, Bingbo Lv
{"title":"具有弹性血管壁的颈动脉中分数阶麦克斯韦幂律流体的周期性脉动血流分析。","authors":"Yan Zhang, Yuan Peng, Jun Gao, Yu Bai, Dezhou Sun, Xiaopeng Sun, Bingbo Lv","doi":"10.1080/10255842.2023.2262667","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodynamic analysis reveals a highly significant effect on the prevention, diagnosis, and treatment of human vascular diseases. This article goes deeply into the periodic pulsatile blood flow in the carotid artery with an elastic vessel wall. In view of blood rheological experimental data, the constitutive equation of fractional Maxwell power-law fluid with yield stress, which can describe the four characteristics of yield stress, viscoelasticity, shear thinning, and thixotropy is established. Meanwhile, drawing support from the data of pulsatile flow, the finite Fourier series of pressure gradient with a period of 1 s has been proposed. Leading into Hooke's law can build the fluid-structure coupling boundary condition of blood flow and elastic vessel wall. The numerical solutions are got hold of finite difference method integrated with the newly developed L1-algorithm, and their convergence and stability of which are verified. The axial velocities of blood under different constitutive relationships are compared. The results throw light that other constitutive relationships underestimate the velocity of blood. Furthermore, the flow rate and wall shear stress on different fluid are calculated. It can be concluded that compared with Bingham fluid, the maximum and minimum flow rate/wall shear stress of fractional Maxwell power-law fluid with yield stress increases by 19% and 32%, respectively. The flow rate lags behind the pressure gradient and has time delay effect, on the contrary, the velocity of blood vessel wall is keeping pace with the pressure gradient. The effects of relevant physical parameters on velocity are discussed. In addition, the spatiotemporal distribution of blood flow in cerebral artery and femoral artery are analyzed.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of periodic pulsating blood flow of fractional Maxwell power-law fluid in carotid artery with elastic vessel wall.\",\"authors\":\"Yan Zhang, Yuan Peng, Jun Gao, Yu Bai, Dezhou Sun, Xiaopeng Sun, Bingbo Lv\",\"doi\":\"10.1080/10255842.2023.2262667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemodynamic analysis reveals a highly significant effect on the prevention, diagnosis, and treatment of human vascular diseases. This article goes deeply into the periodic pulsatile blood flow in the carotid artery with an elastic vessel wall. In view of blood rheological experimental data, the constitutive equation of fractional Maxwell power-law fluid with yield stress, which can describe the four characteristics of yield stress, viscoelasticity, shear thinning, and thixotropy is established. Meanwhile, drawing support from the data of pulsatile flow, the finite Fourier series of pressure gradient with a period of 1 s has been proposed. Leading into Hooke's law can build the fluid-structure coupling boundary condition of blood flow and elastic vessel wall. The numerical solutions are got hold of finite difference method integrated with the newly developed L1-algorithm, and their convergence and stability of which are verified. The axial velocities of blood under different constitutive relationships are compared. The results throw light that other constitutive relationships underestimate the velocity of blood. Furthermore, the flow rate and wall shear stress on different fluid are calculated. It can be concluded that compared with Bingham fluid, the maximum and minimum flow rate/wall shear stress of fractional Maxwell power-law fluid with yield stress increases by 19% and 32%, respectively. The flow rate lags behind the pressure gradient and has time delay effect, on the contrary, the velocity of blood vessel wall is keeping pace with the pressure gradient. The effects of relevant physical parameters on velocity are discussed. In addition, the spatiotemporal distribution of blood flow in cerebral artery and femoral artery are analyzed.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2262667\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2262667","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

血液动力学分析显示,在预防、诊断和治疗人类血管疾病方面具有非常重要的作用。本文深入研究了具有弹性血管壁的颈动脉中的周期性脉动血流。根据血液流变实验数据,建立了具有屈服应力的分数阶麦克斯韦幂律流体的本构方程,该方程可以描述屈服应力、粘弹性、剪切稀化和触变性四个特征。同时,在脉动流数据的支持下,建立了周期为1的压力梯度的有限傅立叶级数 已经提出了s。引入胡克定律,可以建立血液流动与弹性血管壁的流固耦合边界条件。将有限差分法与新发展的L1算法相结合,得到了数值解,并验证了其收敛性和稳定性。比较了不同本构关系下血液的轴向速度。研究结果表明,其他组成关系低估了血液的速度。此外,还计算了不同流体的流速和壁面剪切应力。可以得出结论,与宾厄姆流体相比,具有屈服应力的分数阶麦克斯韦幂律流体的最大和最小流量/壁面剪切应力分别增加了19%和32%。流速滞后于压力梯度并具有时间延迟效应,相反,血管壁的速度与压力梯度同步。讨论了相关物理参数对速度的影响。此外,还分析了脑动脉和股动脉血流的时空分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of periodic pulsating blood flow of fractional Maxwell power-law fluid in carotid artery with elastic vessel wall.

Hemodynamic analysis reveals a highly significant effect on the prevention, diagnosis, and treatment of human vascular diseases. This article goes deeply into the periodic pulsatile blood flow in the carotid artery with an elastic vessel wall. In view of blood rheological experimental data, the constitutive equation of fractional Maxwell power-law fluid with yield stress, which can describe the four characteristics of yield stress, viscoelasticity, shear thinning, and thixotropy is established. Meanwhile, drawing support from the data of pulsatile flow, the finite Fourier series of pressure gradient with a period of 1 s has been proposed. Leading into Hooke's law can build the fluid-structure coupling boundary condition of blood flow and elastic vessel wall. The numerical solutions are got hold of finite difference method integrated with the newly developed L1-algorithm, and their convergence and stability of which are verified. The axial velocities of blood under different constitutive relationships are compared. The results throw light that other constitutive relationships underestimate the velocity of blood. Furthermore, the flow rate and wall shear stress on different fluid are calculated. It can be concluded that compared with Bingham fluid, the maximum and minimum flow rate/wall shear stress of fractional Maxwell power-law fluid with yield stress increases by 19% and 32%, respectively. The flow rate lags behind the pressure gradient and has time delay effect, on the contrary, the velocity of blood vessel wall is keeping pace with the pressure gradient. The effects of relevant physical parameters on velocity are discussed. In addition, the spatiotemporal distribution of blood flow in cerebral artery and femoral artery are analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信