黎曼球分支覆盖的离散周期矩阵和离散全纯积分的收敛性

Pub Date : 2021-07-02 DOI:10.1007/s11040-021-09394-2
Alexander I. Bobenko, Ulrike Bücking
{"title":"黎曼球分支覆盖的离散周期矩阵和离散全纯积分的收敛性","authors":"Alexander I. Bobenko,&nbsp;Ulrike Bücking","doi":"10.1007/s11040-021-09394-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere <span>\\(\\hat {\\mathbb {C}}\\)</span>. Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11040-021-09394-2","citationCount":"2","resultStr":"{\"title\":\"Convergence of Discrete Period Matrices and Discrete Holomorphic Integrals for Ramified Coverings of the Riemann Sphere\",\"authors\":\"Alexander I. Bobenko,&nbsp;Ulrike Bücking\",\"doi\":\"10.1007/s11040-021-09394-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere <span>\\\\(\\\\hat {\\\\mathbb {C}}\\\\)</span>. Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11040-021-09394-2\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-021-09394-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09394-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一类紧致黎曼曲面,它们是黎曼球的分枝覆盖\(\hat {\mathbb {C}}\)。基于这种覆盖的三角剖分,我们定义了离散(多值)调和函数和全纯函数。证明了相应的离散周期矩阵收敛于连续周期矩阵。为了获得三角形最大边长度线性的误差估计,我们在每个分支点的邻域中适当地调整三角剖分。最后,我们还证明了离散全纯积分对于分支覆盖的自适应三角剖分的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Convergence of Discrete Period Matrices and Discrete Holomorphic Integrals for Ramified Coverings of the Riemann Sphere

We consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere \(\hat {\mathbb {C}}\). Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信