Jihong Yang , Hanchen Zhou , Yaqin Liu, Hui Wang, Yujie Xu, Jianqin Huang, Pandeng Lei
{"title":"从白色和黄色芽的白化茶品种加工的绿茶的化学成分","authors":"Jihong Yang , Hanchen Zhou , Yaqin Liu, Hui Wang, Yujie Xu, Jianqin Huang, Pandeng Lei","doi":"10.1016/j.fochms.2022.100143","DOIUrl":null,"url":null,"abstract":"<div><p>Green tea processed from albino tea varieties often has umami taste and fresh aroma. This study identified green teas made from two types of albino tea cultivar, one having the white shoots (called Naibai, NB) and the other having the yellow shoots (called Huangjinya, HJY). Taste compounds analyses showed that galloylated catechins were highly concentrated in HJY green teas, whereas non-galloylated catechins and amino acids were more abundant in NB green teas. <em>CsTA</em> (involved in the catabolism of galloylated catechins) showed high expression in HJY tea shoots, resulting in gallic acid as a precursor for <em>β</em>-glucogallin biosynthesis being abundant in HJY. <em>CsPDX2.1</em> (responsible for theanine hydrolyzation) had a lower expression level in NB than HJY shoots. Fatty acid–derived volatiles (FADVs), glycosidically bound volatiles (GBVs) and carotenoid–derived volatiles (CDVs) were highly concentrated in HJY green teas, whereas amino acids–derived volatiles were highly concentrated in NB green teas.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100143"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/87/main.PMC9640954.pdf","citationCount":"1","resultStr":"{\"title\":\"Chemical constituents of green teas processed from albino tea cultivars with white and yellow shoots\",\"authors\":\"Jihong Yang , Hanchen Zhou , Yaqin Liu, Hui Wang, Yujie Xu, Jianqin Huang, Pandeng Lei\",\"doi\":\"10.1016/j.fochms.2022.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Green tea processed from albino tea varieties often has umami taste and fresh aroma. This study identified green teas made from two types of albino tea cultivar, one having the white shoots (called Naibai, NB) and the other having the yellow shoots (called Huangjinya, HJY). Taste compounds analyses showed that galloylated catechins were highly concentrated in HJY green teas, whereas non-galloylated catechins and amino acids were more abundant in NB green teas. <em>CsTA</em> (involved in the catabolism of galloylated catechins) showed high expression in HJY tea shoots, resulting in gallic acid as a precursor for <em>β</em>-glucogallin biosynthesis being abundant in HJY. <em>CsPDX2.1</em> (responsible for theanine hydrolyzation) had a lower expression level in NB than HJY shoots. Fatty acid–derived volatiles (FADVs), glycosidically bound volatiles (GBVs) and carotenoid–derived volatiles (CDVs) were highly concentrated in HJY green teas, whereas amino acids–derived volatiles were highly concentrated in NB green teas.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"5 \",\"pages\":\"Article 100143\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/87/main.PMC9640954.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566222000715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Chemical constituents of green teas processed from albino tea cultivars with white and yellow shoots
Green tea processed from albino tea varieties often has umami taste and fresh aroma. This study identified green teas made from two types of albino tea cultivar, one having the white shoots (called Naibai, NB) and the other having the yellow shoots (called Huangjinya, HJY). Taste compounds analyses showed that galloylated catechins were highly concentrated in HJY green teas, whereas non-galloylated catechins and amino acids were more abundant in NB green teas. CsTA (involved in the catabolism of galloylated catechins) showed high expression in HJY tea shoots, resulting in gallic acid as a precursor for β-glucogallin biosynthesis being abundant in HJY. CsPDX2.1 (responsible for theanine hydrolyzation) had a lower expression level in NB than HJY shoots. Fatty acid–derived volatiles (FADVs), glycosidically bound volatiles (GBVs) and carotenoid–derived volatiles (CDVs) were highly concentrated in HJY green teas, whereas amino acids–derived volatiles were highly concentrated in NB green teas.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.