Jingjing Qian, Lin Zheng*, Yijun Zhao and Mouming Zhao*,
{"title":"酪蛋白衍生肽YPVEPF与睡眠增强作用的稳定性、生物利用度和构效关系","authors":"Jingjing Qian, Lin Zheng*, Yijun Zhao and Mouming Zhao*, ","doi":"10.1021/acs.jafc.2c05024","DOIUrl":null,"url":null,"abstract":"<p >YPVEPF (Tyr-Pro-Val-Glu-Pro-Phe) is an outstanding sleep-enhancing peptide derived from casein. This study aimed to evaluate the bioavailability of YPVEPF in vitro and in vivo and to explore its structure–activity relationship through a sleep test and cheminformatics. Our results showed that YPVEPF was unstable against gastrointestinal enzymes and almost totally degraded to YPVEP in vitro. However, the pharmaco-kinetics results in vivo showed that the <i>C</i><sub>max</sub> of YPVEPF was 10.38 ± 4.01 ng/mL at 5 min, and YPVEPF could be detected in the stomach, intestine, and brain at 12.89 ± 0.55, 10.26 ± 0.23, and 2.47 ± 0.55 ng/g, respectively. The main metabolites including YPVEP, YP, PVEPF, and PVEP were identified. We first explored whether the fragment YPVEP also had a strong sleep-enhancing effect, and the sleep-enhancing effects of PVEPF and PVEP (lacking a Tyr residue) significantly decreased compared with those of YPVEPF and YPVEP. Moreover, molecular docking and quantum calculations revealed that the N-terminus Tyr played a dominant role in YPVEPF and YPVEP. They had distinctive self-folding structures and varying electron-withdrawing properties of the groups at the N terminus, allowing different binding modes and electron/proton transfer.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 47","pages":"14947–14958"},"PeriodicalIF":6.2000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stability, Bioavailability, and Structure–Activity Relationship of Casein-Derived Peptide YPVEPF with a Sleep-Enhancing Effect\",\"authors\":\"Jingjing Qian, Lin Zheng*, Yijun Zhao and Mouming Zhao*, \",\"doi\":\"10.1021/acs.jafc.2c05024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >YPVEPF (Tyr-Pro-Val-Glu-Pro-Phe) is an outstanding sleep-enhancing peptide derived from casein. This study aimed to evaluate the bioavailability of YPVEPF in vitro and in vivo and to explore its structure–activity relationship through a sleep test and cheminformatics. Our results showed that YPVEPF was unstable against gastrointestinal enzymes and almost totally degraded to YPVEP in vitro. However, the pharmaco-kinetics results in vivo showed that the <i>C</i><sub>max</sub> of YPVEPF was 10.38 ± 4.01 ng/mL at 5 min, and YPVEPF could be detected in the stomach, intestine, and brain at 12.89 ± 0.55, 10.26 ± 0.23, and 2.47 ± 0.55 ng/g, respectively. The main metabolites including YPVEP, YP, PVEPF, and PVEP were identified. We first explored whether the fragment YPVEP also had a strong sleep-enhancing effect, and the sleep-enhancing effects of PVEPF and PVEP (lacking a Tyr residue) significantly decreased compared with those of YPVEPF and YPVEP. Moreover, molecular docking and quantum calculations revealed that the N-terminus Tyr played a dominant role in YPVEPF and YPVEP. They had distinctive self-folding structures and varying electron-withdrawing properties of the groups at the N terminus, allowing different binding modes and electron/proton transfer.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"70 47\",\"pages\":\"14947–14958\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.2c05024\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.2c05024","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability, Bioavailability, and Structure–Activity Relationship of Casein-Derived Peptide YPVEPF with a Sleep-Enhancing Effect
YPVEPF (Tyr-Pro-Val-Glu-Pro-Phe) is an outstanding sleep-enhancing peptide derived from casein. This study aimed to evaluate the bioavailability of YPVEPF in vitro and in vivo and to explore its structure–activity relationship through a sleep test and cheminformatics. Our results showed that YPVEPF was unstable against gastrointestinal enzymes and almost totally degraded to YPVEP in vitro. However, the pharmaco-kinetics results in vivo showed that the Cmax of YPVEPF was 10.38 ± 4.01 ng/mL at 5 min, and YPVEPF could be detected in the stomach, intestine, and brain at 12.89 ± 0.55, 10.26 ± 0.23, and 2.47 ± 0.55 ng/g, respectively. The main metabolites including YPVEP, YP, PVEPF, and PVEP were identified. We first explored whether the fragment YPVEP also had a strong sleep-enhancing effect, and the sleep-enhancing effects of PVEPF and PVEP (lacking a Tyr residue) significantly decreased compared with those of YPVEPF and YPVEP. Moreover, molecular docking and quantum calculations revealed that the N-terminus Tyr played a dominant role in YPVEPF and YPVEP. They had distinctive self-folding structures and varying electron-withdrawing properties of the groups at the N terminus, allowing different binding modes and electron/proton transfer.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.