Dorine Van Dyck, Nicolas Deconinck, Alec Aeby, Simon Baijot, Nicolas Coquelet, Xavier De Tiège, Charline Urbain
{"title":"发育协调障碍儿童的非典型程序性学习技能。","authors":"Dorine Van Dyck, Nicolas Deconinck, Alec Aeby, Simon Baijot, Nicolas Coquelet, Xavier De Tiège, Charline Urbain","doi":"10.1080/09297049.2022.2152433","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the procedural learning deficit hypothesis in Developmental Coordination Disorder (DCD) while controlling for global performance such as slower reaction times (RTs) and variability. Procedural (sequence) learning was assessed in 31 children with DCD and 31 age-matched typically developing (TD) children through a serial reaction time task (SRTT). Sequential and random trial conditions were intermixed within five training epochs. Two repeated measures ANOVAs were conducted on a Sequence-Specific Learning Index (SSLI) and a Global Performance Index (GPI, speed/accuracy measure) with Epoch (for SSLI and GPI) and Condition (for GPI) as within-subjects factors, and Group as between-subjects factor. Controlling for RTs differences through normalized RTs, revealed a global reduction of SSLI in children with DCD compared with TD peers suggesting reduced sequence learning skills in DCD. Still, a significant Group x Condition interaction observed on GPI indicated that children from both groups were able to discriminate between sequential and random trials. DCD presented reduced procedural learning skills after controlling for global performance. This finding highlights the importance of considering the general functioning of the child while assessing learning skills in patients.</p>","PeriodicalId":9789,"journal":{"name":"Child Neuropsychology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atypical procedural learning skills in children with Developmental Coordination Disorder.\",\"authors\":\"Dorine Van Dyck, Nicolas Deconinck, Alec Aeby, Simon Baijot, Nicolas Coquelet, Xavier De Tiège, Charline Urbain\",\"doi\":\"10.1080/09297049.2022.2152433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the procedural learning deficit hypothesis in Developmental Coordination Disorder (DCD) while controlling for global performance such as slower reaction times (RTs) and variability. Procedural (sequence) learning was assessed in 31 children with DCD and 31 age-matched typically developing (TD) children through a serial reaction time task (SRTT). Sequential and random trial conditions were intermixed within five training epochs. Two repeated measures ANOVAs were conducted on a Sequence-Specific Learning Index (SSLI) and a Global Performance Index (GPI, speed/accuracy measure) with Epoch (for SSLI and GPI) and Condition (for GPI) as within-subjects factors, and Group as between-subjects factor. Controlling for RTs differences through normalized RTs, revealed a global reduction of SSLI in children with DCD compared with TD peers suggesting reduced sequence learning skills in DCD. Still, a significant Group x Condition interaction observed on GPI indicated that children from both groups were able to discriminate between sequential and random trials. DCD presented reduced procedural learning skills after controlling for global performance. This finding highlights the importance of considering the general functioning of the child while assessing learning skills in patients.</p>\",\"PeriodicalId\":9789,\"journal\":{\"name\":\"Child Neuropsychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Child Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/09297049.2022.2152433\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/09297049.2022.2152433","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Atypical procedural learning skills in children with Developmental Coordination Disorder.
We investigated the procedural learning deficit hypothesis in Developmental Coordination Disorder (DCD) while controlling for global performance such as slower reaction times (RTs) and variability. Procedural (sequence) learning was assessed in 31 children with DCD and 31 age-matched typically developing (TD) children through a serial reaction time task (SRTT). Sequential and random trial conditions were intermixed within five training epochs. Two repeated measures ANOVAs were conducted on a Sequence-Specific Learning Index (SSLI) and a Global Performance Index (GPI, speed/accuracy measure) with Epoch (for SSLI and GPI) and Condition (for GPI) as within-subjects factors, and Group as between-subjects factor. Controlling for RTs differences through normalized RTs, revealed a global reduction of SSLI in children with DCD compared with TD peers suggesting reduced sequence learning skills in DCD. Still, a significant Group x Condition interaction observed on GPI indicated that children from both groups were able to discriminate between sequential and random trials. DCD presented reduced procedural learning skills after controlling for global performance. This finding highlights the importance of considering the general functioning of the child while assessing learning skills in patients.
期刊介绍:
The purposes of Child Neuropsychology are to:
publish research on the neuropsychological effects of disorders which affect brain functioning in children and adolescents,
publish research on the neuropsychological dimensions of development in childhood and adolescence and
promote the integration of theory, method and research findings in child/developmental neuropsychology.
The primary emphasis of Child Neuropsychology is to publish original empirical research. Theoretical and methodological papers and theoretically relevant case studies are welcome. Critical reviews of topics pertinent to child/developmental neuropsychology are encouraged.
Emphases of interest include the following: information processing mechanisms; the impact of injury or disease on neuropsychological functioning; behavioral cognitive and pharmacological approaches to treatment/intervention; psychosocial correlates of neuropsychological dysfunction; definitive normative, reliability, and validity studies of psychometric and other procedures used in the neuropsychological assessment of children and adolescents. Articles on both normal and dysfunctional development that are relevant to the aforementioned dimensions are welcome. Multiple approaches (e.g., basic, applied, clinical) and multiple methodologies (e.g., cross-sectional, longitudinal, experimental, multivariate, correlational) are appropriate. Books, media, and software reviews will be published.