Ning Sun, Tianyuan Yang, Yulin Tang, Yuan Zhao, Hui Wang, Shuping Zhao, Haoyang Tan, Lin Li* and Honggang Fan*,
{"title":"番茄红素通过抑制氧化应激介导的内质网应激途径凋亡减轻大鼠慢性应激性肝损伤","authors":"Ning Sun, Tianyuan Yang, Yulin Tang, Yuan Zhao, Hui Wang, Shuping Zhao, Haoyang Tan, Lin Li* and Honggang Fan*, ","doi":"10.1021/acs.jafc.2c06650","DOIUrl":null,"url":null,"abstract":"<p >The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of −9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 45","pages":"14414–14426"},"PeriodicalIF":6.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lycopene Alleviates Chronic Stress-Induced Liver Injury by Inhibiting Oxidative Stress-Mediated Endoplasmic Reticulum Stress Pathway Apoptosis in Rats\",\"authors\":\"Ning Sun, Tianyuan Yang, Yulin Tang, Yuan Zhao, Hui Wang, Shuping Zhao, Haoyang Tan, Lin Li* and Honggang Fan*, \",\"doi\":\"10.1021/acs.jafc.2c06650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of −9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"70 45\",\"pages\":\"14414–14426\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.2c06650\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.2c06650","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lycopene Alleviates Chronic Stress-Induced Liver Injury by Inhibiting Oxidative Stress-Mediated Endoplasmic Reticulum Stress Pathway Apoptosis in Rats
The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of −9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.