左前额叶α动力学预测老年人的执行工作记忆功能。

IF 2 4区 医学 Q3 NEUROSCIENCES
Cognitive Neuroscience Pub Date : 2022-01-01 Epub Date: 2021-04-22 DOI:10.1080/17588928.2021.1911977
Oded Meiron, Elishai Ezra Tsur, Hagai Factor, Shoham Jacobsen, David Yoel Salomon, Nir Kraizler, Efraim Jaul
{"title":"左前额叶α动力学预测老年人的执行工作记忆功能。","authors":"Oded Meiron,&nbsp;Elishai Ezra Tsur,&nbsp;Hagai Factor,&nbsp;Shoham Jacobsen,&nbsp;David Yoel Salomon,&nbsp;Nir Kraizler,&nbsp;Efraim Jaul","doi":"10.1080/17588928.2021.1911977","DOIUrl":null,"url":null,"abstract":"<p><p>Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting <i>offline-WM</i> periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"15-25"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17588928.2021.1911977","citationCount":"0","resultStr":"{\"title\":\"Left-prefrontal alpha-dynamics predict executive working-memory functioning in elderly people.\",\"authors\":\"Oded Meiron,&nbsp;Elishai Ezra Tsur,&nbsp;Hagai Factor,&nbsp;Shoham Jacobsen,&nbsp;David Yoel Salomon,&nbsp;Nir Kraizler,&nbsp;Efraim Jaul\",\"doi\":\"10.1080/17588928.2021.1911977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting <i>offline-WM</i> periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\" \",\"pages\":\"15-25\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17588928.2021.1911977\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2021.1911977\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2021.1911977","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究结果表明,脑电图(EEG)在θ和α频段的振荡反映了同步的区域间神经元活动,并被认为反映了人类的认知控制和执行工作记忆机制。在50岁以上,假设在静息或不同脑功能状态下α和θ波段功率的显著改变很可能是由于痴呆前的认知障碍,或与年龄相关的神经系统疾病的严重程度增加。通过获取老年人(54 ~ 83岁)执行工作记忆相关的脑电图振荡和执行工作记忆表现评分,对其执行工作记忆功能进行评估。在在线WM期间,在EWM期间的特定在线WM事件期间,以及在在线WM之前的休息离线WM期间,记录WM表现和WM脑状态EEG。与在线学习相比,左侧前额叶α能力在离线学习期间增强,并与学习准确性显著相关。在线WM活动时,左侧前额叶α功率和左侧前额叶-顶叶θ功率前后差异梯度与反应时间相关。重要的是,在主动存储事件、wm偏移离线期间和预备预检索事件中,过度的左前额叶α活动与较差的EWM性能有关。讨论了开发有针对性的非侵入性认知增强干预措施和开发基于脑电图的临床监测老年人病理性认知衰退生物标志物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Left-prefrontal alpha-dynamics predict executive working-memory functioning in elderly people.

Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting offline-WM periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信