{"title":"左前额叶α动力学预测老年人的执行工作记忆功能。","authors":"Oded Meiron, Elishai Ezra Tsur, Hagai Factor, Shoham Jacobsen, David Yoel Salomon, Nir Kraizler, Efraim Jaul","doi":"10.1080/17588928.2021.1911977","DOIUrl":null,"url":null,"abstract":"<p><p>Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting <i>offline-WM</i> periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"15-25"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17588928.2021.1911977","citationCount":"0","resultStr":"{\"title\":\"Left-prefrontal alpha-dynamics predict executive working-memory functioning in elderly people.\",\"authors\":\"Oded Meiron, Elishai Ezra Tsur, Hagai Factor, Shoham Jacobsen, David Yoel Salomon, Nir Kraizler, Efraim Jaul\",\"doi\":\"10.1080/17588928.2021.1911977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting <i>offline-WM</i> periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\" \",\"pages\":\"15-25\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17588928.2021.1911977\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2021.1911977\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2021.1911977","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Left-prefrontal alpha-dynamics predict executive working-memory functioning in elderly people.
Recent findings suggest that electroencephalography (EEG) oscillations in the theta and alpha frequency-bands reflect synchronized interregional neuronal activity and are considered to reflect cognitive-control, and executive working memory mechanisms in humans. Above the age of 50 years, hypothesized pronounced alterations in alpha and theta-band power at resting or across different WM-functioning brain states may well be due to pre-dementia cognitive impairments, or increasing severity of age-related neurological disorders. Executive working memory (EWM) functioning was assessed in older-adult participants (54 to 83 years old) by obtaining their WM-related EEG oscillations and WM performance scores. WM performance and WM brain-state EEG were recorded during online-WM periods as well as during specific online WM events within EWM periods, and during resting offline-WM periods that preceded online-WM periods. Left-prefrontal alpha-power was enhanced during offline-WM periods versus online-WM periods and was significantly related to WM accuracy. Left-prefrontal alpha power and left prefrontal-parietal theta power anterior-posterior difference-gradient during online WM activity were related to reaction times (RT's). Importantly, during active-storage events, WM-offset offline-periods, and preparatory pre-retrieval events, excessive left-prefrontal alpha activity was related to poor EWM performance. The potential for developing targeted noninvasive cognition-enhancing interventions and developing clinical-monitoring EEG-based biomarkers of pathological cognitive-decline in elderly people is discussed.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.