Irena Arslanova, Keying Wang, Hiroaki Gomi, Patrick Haggard
{"title":"指侧抑制的体感诱发电位根据知觉加工模式进行调节:比较或组合多指触觉运动。","authors":"Irena Arslanova, Keying Wang, Hiroaki Gomi, Patrick Haggard","doi":"10.1080/17588928.2020.1839403","DOIUrl":null,"url":null,"abstract":"<p><p>Many perceptual studies focus on the brain's capacity to discriminate between stimuli. However, our normal experience of the world also involves integrating multiple stimuli into a single perceptual event. Neural mechanisms such as lateral inhibition are believed to enhance local differences between sensory inputs from nearby regions of the receptor surface. However, this mechanism would seem dysfunctional when sensory inputs need to be combined rather than contrasted. Here, we investigated whether the brain can <i>strategically</i> regulate the strength of suppressive interactions that underlie lateral inhibition between finger representations in human somatosensory processing. To do this, we compared sensory processing between conditions that required either comparing or combining information. We delivered two simultaneous tactile motion trajectories to index and middle fingertips of the right hand. Participants had to either compare the directions of the two stimuli, or to combine them to form their average direction. To reveal preparatory tuning of somatosensory cortex, we used an established event-related potential design to measure the interaction between cortical representations evoked by digital nerve shocks immediately before each tactile stimulus. Consistent with previous studies, we found a clear suppression between cortical activations when participants were instructed to compare the tactile motion directions. Importantly, this suppression was significantly reduced when participants had to combine the same stimuli. These findings suggest that the brain can strategically switch between a comparative and a combinative mode of somatosensory processing, according to the perceptual goal, by preparatorily adjusting the strength of a process akin to lateral inhibition.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"47-59"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17588928.2020.1839403","citationCount":"2","resultStr":"{\"title\":\"Somatosensory evoked potentials that index lateral inhibition are modulated according to the mode of perceptual processing: comparing or combining multi-digit tactile motion.\",\"authors\":\"Irena Arslanova, Keying Wang, Hiroaki Gomi, Patrick Haggard\",\"doi\":\"10.1080/17588928.2020.1839403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many perceptual studies focus on the brain's capacity to discriminate between stimuli. However, our normal experience of the world also involves integrating multiple stimuli into a single perceptual event. Neural mechanisms such as lateral inhibition are believed to enhance local differences between sensory inputs from nearby regions of the receptor surface. However, this mechanism would seem dysfunctional when sensory inputs need to be combined rather than contrasted. Here, we investigated whether the brain can <i>strategically</i> regulate the strength of suppressive interactions that underlie lateral inhibition between finger representations in human somatosensory processing. To do this, we compared sensory processing between conditions that required either comparing or combining information. We delivered two simultaneous tactile motion trajectories to index and middle fingertips of the right hand. Participants had to either compare the directions of the two stimuli, or to combine them to form their average direction. To reveal preparatory tuning of somatosensory cortex, we used an established event-related potential design to measure the interaction between cortical representations evoked by digital nerve shocks immediately before each tactile stimulus. Consistent with previous studies, we found a clear suppression between cortical activations when participants were instructed to compare the tactile motion directions. Importantly, this suppression was significantly reduced when participants had to combine the same stimuli. These findings suggest that the brain can strategically switch between a comparative and a combinative mode of somatosensory processing, according to the perceptual goal, by preparatorily adjusting the strength of a process akin to lateral inhibition.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\" \",\"pages\":\"47-59\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17588928.2020.1839403\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2020.1839403\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2020.1839403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Somatosensory evoked potentials that index lateral inhibition are modulated according to the mode of perceptual processing: comparing or combining multi-digit tactile motion.
Many perceptual studies focus on the brain's capacity to discriminate between stimuli. However, our normal experience of the world also involves integrating multiple stimuli into a single perceptual event. Neural mechanisms such as lateral inhibition are believed to enhance local differences between sensory inputs from nearby regions of the receptor surface. However, this mechanism would seem dysfunctional when sensory inputs need to be combined rather than contrasted. Here, we investigated whether the brain can strategically regulate the strength of suppressive interactions that underlie lateral inhibition between finger representations in human somatosensory processing. To do this, we compared sensory processing between conditions that required either comparing or combining information. We delivered two simultaneous tactile motion trajectories to index and middle fingertips of the right hand. Participants had to either compare the directions of the two stimuli, or to combine them to form their average direction. To reveal preparatory tuning of somatosensory cortex, we used an established event-related potential design to measure the interaction between cortical representations evoked by digital nerve shocks immediately before each tactile stimulus. Consistent with previous studies, we found a clear suppression between cortical activations when participants were instructed to compare the tactile motion directions. Importantly, this suppression was significantly reduced when participants had to combine the same stimuli. These findings suggest that the brain can strategically switch between a comparative and a combinative mode of somatosensory processing, according to the perceptual goal, by preparatorily adjusting the strength of a process akin to lateral inhibition.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.