{"title":"全息:在高分辨率成像中的应用","authors":"Takeshi Kawasaki;Yoshio Takahashi;Toshiaki Tanigaki","doi":"10.1093/jmicro/dfaa050","DOIUrl":null,"url":null,"abstract":"Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":"70 1","pages":"39-46"},"PeriodicalIF":1.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa050","citationCount":"1","resultStr":"{\"title\":\"Holography: application to high-resolution imaging\",\"authors\":\"Takeshi Kawasaki;Yoshio Takahashi;Toshiaki Tanigaki\",\"doi\":\"10.1093/jmicro/dfaa050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.\",\"PeriodicalId\":18515,\"journal\":{\"name\":\"Microscopy\",\"volume\":\"70 1\",\"pages\":\"39-46\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jmicro/dfaa050\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9433130/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9433130/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holography: application to high-resolution imaging
Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.