{"title":"高分辨率电子ptychography的实际实现及其与离轴电子全息术的比较","authors":"Arthur M Blackburn;Robert A McLeod","doi":"10.1093/jmicro/dfaa055","DOIUrl":null,"url":null,"abstract":"Ptychography is a coherent diffractive imaging technique that can determine how an electron wave is transmitted through an object by probing it in many small overlapping regions and processing the diffraction data obtained at each point. The resulting electron transmission model describes both phase and amplitude changes to the electron wave. Ptychography has been adopted in transmission electron microscopy in recent years following advances in high-speed direct electron detectors and computer algorithms which now make the technique suitable for practical applications. Its ability to retrieve quantitative phase information at high spatial resolution makes it a plausible alternative or complement to electron holography. Furthermore, unlike off-axis electron holography, it can provide phase information without an electron bi-prism assembly or the requirement of a minimally structured region adjacent to the region of interest in the object. However, it does require a well-calibrated scanning transmission electron microscope and a well-managed workflow to manage the calibration, data acquisition and reconstruction process to yield a practical technique. Here we detail this workflow and highlight how this is greatly assisted by acquisition management software. Through experimental data and modelling we also explore the similarities and differences between high-resolution ptychography and electron holography. Both techniques show a dependence of the recovered phase on the crystalline orientation of the material which is attributable to dynamical scattering. However, the exact nature of the variation differs reflecting fundamental expectations, but nonetheless equally useful information is obtained from electron holography and the ptychographically determined object transmission function.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa055","citationCount":"0","resultStr":"{\"title\":\"Practical implementation of high-resolution electron ptychography and comparison with off-axis electron holography\",\"authors\":\"Arthur M Blackburn;Robert A McLeod\",\"doi\":\"10.1093/jmicro/dfaa055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ptychography is a coherent diffractive imaging technique that can determine how an electron wave is transmitted through an object by probing it in many small overlapping regions and processing the diffraction data obtained at each point. The resulting electron transmission model describes both phase and amplitude changes to the electron wave. Ptychography has been adopted in transmission electron microscopy in recent years following advances in high-speed direct electron detectors and computer algorithms which now make the technique suitable for practical applications. Its ability to retrieve quantitative phase information at high spatial resolution makes it a plausible alternative or complement to electron holography. Furthermore, unlike off-axis electron holography, it can provide phase information without an electron bi-prism assembly or the requirement of a minimally structured region adjacent to the region of interest in the object. However, it does require a well-calibrated scanning transmission electron microscope and a well-managed workflow to manage the calibration, data acquisition and reconstruction process to yield a practical technique. Here we detail this workflow and highlight how this is greatly assisted by acquisition management software. Through experimental data and modelling we also explore the similarities and differences between high-resolution ptychography and electron holography. Both techniques show a dependence of the recovered phase on the crystalline orientation of the material which is attributable to dynamical scattering. However, the exact nature of the variation differs reflecting fundamental expectations, but nonetheless equally useful information is obtained from electron holography and the ptychographically determined object transmission function.\",\"PeriodicalId\":18515,\"journal\":{\"name\":\"Microscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jmicro/dfaa055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9433136/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9433136/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical implementation of high-resolution electron ptychography and comparison with off-axis electron holography
Ptychography is a coherent diffractive imaging technique that can determine how an electron wave is transmitted through an object by probing it in many small overlapping regions and processing the diffraction data obtained at each point. The resulting electron transmission model describes both phase and amplitude changes to the electron wave. Ptychography has been adopted in transmission electron microscopy in recent years following advances in high-speed direct electron detectors and computer algorithms which now make the technique suitable for practical applications. Its ability to retrieve quantitative phase information at high spatial resolution makes it a plausible alternative or complement to electron holography. Furthermore, unlike off-axis electron holography, it can provide phase information without an electron bi-prism assembly or the requirement of a minimally structured region adjacent to the region of interest in the object. However, it does require a well-calibrated scanning transmission electron microscope and a well-managed workflow to manage the calibration, data acquisition and reconstruction process to yield a practical technique. Here we detail this workflow and highlight how this is greatly assisted by acquisition management software. Through experimental data and modelling we also explore the similarities and differences between high-resolution ptychography and electron holography. Both techniques show a dependence of the recovered phase on the crystalline orientation of the material which is attributable to dynamical scattering. However, the exact nature of the variation differs reflecting fundamental expectations, but nonetheless equally useful information is obtained from electron holography and the ptychographically determined object transmission function.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.