{"title":"无透镜傅立叶变换电子全息术在涡旋光束分析中的应用","authors":"Ken Harada;Yoshimasa A Ono;Yoshio Takahashi","doi":"10.1093/jmicro/dfaa008","DOIUrl":null,"url":null,"abstract":"Lensless Fourier transform holography has been developed. By treating Bragg diffraction waves as object waves and a transmitted spherical wave as a reference wave, these two waves are interfered and recorded as holograms away from the reciprocal plane. In this method, reconstruction of holograms requires only one Fourier transform. Application of this method to analyze vortex beams worked well and their amplitude and phase distributions were obtained on the reciprocal plane. By combining the conventional holography with the developed lensless Fourier transform holography, we can reconstruct and analyze electron waves from the real to reciprocal space continuously.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa008","citationCount":"3","resultStr":"{\"title\":\"Lensless fourier transform electron holography applied to vortex beam analysis\",\"authors\":\"Ken Harada;Yoshimasa A Ono;Yoshio Takahashi\",\"doi\":\"10.1093/jmicro/dfaa008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lensless Fourier transform holography has been developed. By treating Bragg diffraction waves as object waves and a transmitted spherical wave as a reference wave, these two waves are interfered and recorded as holograms away from the reciprocal plane. In this method, reconstruction of holograms requires only one Fourier transform. Application of this method to analyze vortex beams worked well and their amplitude and phase distributions were obtained on the reciprocal plane. By combining the conventional holography with the developed lensless Fourier transform holography, we can reconstruct and analyze electron waves from the real to reciprocal space continuously.\",\"PeriodicalId\":18515,\"journal\":{\"name\":\"Microscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/jmicro/dfaa008\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9253065/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9253065/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lensless fourier transform electron holography applied to vortex beam analysis
Lensless Fourier transform holography has been developed. By treating Bragg diffraction waves as object waves and a transmitted spherical wave as a reference wave, these two waves are interfered and recorded as holograms away from the reciprocal plane. In this method, reconstruction of holograms requires only one Fourier transform. Application of this method to analyze vortex beams worked well and their amplitude and phase distributions were obtained on the reciprocal plane. By combining the conventional holography with the developed lensless Fourier transform holography, we can reconstruct and analyze electron waves from the real to reciprocal space continuously.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.