{"title":"关于测试有条件的定性治疗效果。","authors":"Chengchun Shi, Rui Song, Wenbin Lu","doi":"10.1214/18-AOS1750","DOIUrl":null,"url":null,"abstract":"<p><p>Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and non-negligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"47 4","pages":"2348-2377"},"PeriodicalIF":3.2000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOS1750","citationCount":"3","resultStr":"{\"title\":\"ON TESTING CONDITIONAL QUALITATIVE TREATMENT EFFECTS.\",\"authors\":\"Chengchun Shi, Rui Song, Wenbin Lu\",\"doi\":\"10.1214/18-AOS1750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and non-negligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"47 4\",\"pages\":\"2348-2377\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/18-AOS1750\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/18-AOS1750\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOS1750","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
ON TESTING CONDITIONAL QUALITATIVE TREATMENT EFFECTS.
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and non-negligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.