Alexandre Caron, Syann Lee, Joel K. Elmquist, Laurent Gautron
{"title":"瘦素和脑脂肪串联体","authors":"Alexandre Caron, Syann Lee, Joel K. Elmquist, Laurent Gautron","doi":"10.1038/nrn.2018.7","DOIUrl":null,"url":null,"abstract":"The brain regulates adipose tissue metabolism through sympathetic efferent pathways; in turn, adipose tissues relay energy-status information to the brain. This Review gives an overview of interactions between the brain and adipose tissues, with a particular focus on leptin as a regulator of these communications. Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"19 3","pages":"153-165"},"PeriodicalIF":28.7000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nrn.2018.7","citationCount":"160","resultStr":"{\"title\":\"Leptin and brain–adipose crosstalks\",\"authors\":\"Alexandre Caron, Syann Lee, Joel K. Elmquist, Laurent Gautron\",\"doi\":\"10.1038/nrn.2018.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain regulates adipose tissue metabolism through sympathetic efferent pathways; in turn, adipose tissues relay energy-status information to the brain. This Review gives an overview of interactions between the brain and adipose tissues, with a particular focus on leptin as a regulator of these communications. Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.\",\"PeriodicalId\":49142,\"journal\":{\"name\":\"Nature Reviews Neuroscience\",\"volume\":\"19 3\",\"pages\":\"153-165\"},\"PeriodicalIF\":28.7000,\"publicationDate\":\"2018-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/nrn.2018.7\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/nrn.2018.7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/nrn.2018.7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The brain regulates adipose tissue metabolism through sympathetic efferent pathways; in turn, adipose tissues relay energy-status information to the brain. This Review gives an overview of interactions between the brain and adipose tissues, with a particular focus on leptin as a regulator of these communications. Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.