Savita Kashyap;Rahul Pandey;Jaya Madan;Mustafa K. A. Mohammed
{"title":"21%高效柔性钙钛矿太阳能电池凹、凸、正弦弯曲可靠性试验","authors":"Savita Kashyap;Rahul Pandey;Jaya Madan;Mustafa K. A. Mohammed","doi":"10.1109/TDMR.2023.3282641","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) have been considered the new rising star in photovoltaic (PV) technology. However, flexibility is the major limiting factor in PSCs for restraining the potential for wearable applications. Therefore, the flexible-PSC (F-PSC) design is reported and simulated using the Silvaco-TCAD tool. Different bending modes, such as concave, convex, and sinusoidal, including planar structure, have been reported to examine the performance of the proposed device. The influence of bending radius (5 to 20 mm) and bending amplitude (0.5 to 2 mm) is studied and analyzed to optimize the performance of the F-PSC device. It has been obtained that the planar F-PSC delivers higher PV parameters: short-circuit current density (JSC) of 21.9 mA/cm2, open-circuit voltage (VOC) of 1.18 V, fill factor (FF) of 79.31% and PCE of 20.5%. Simulated results are obtained regarding PV parameters, JV, and EQE characteristics. The findings of the reported study would significantly provide a way to explore the F-PSC performance with better-bending properties.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"23 3","pages":"380-385"},"PeriodicalIF":2.5000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability Test of 21% Efficient Flexible Perovskite Solar Cell Under Concave, Convex and Sinusoidal Bending\",\"authors\":\"Savita Kashyap;Rahul Pandey;Jaya Madan;Mustafa K. A. Mohammed\",\"doi\":\"10.1109/TDMR.2023.3282641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells (PSCs) have been considered the new rising star in photovoltaic (PV) technology. However, flexibility is the major limiting factor in PSCs for restraining the potential for wearable applications. Therefore, the flexible-PSC (F-PSC) design is reported and simulated using the Silvaco-TCAD tool. Different bending modes, such as concave, convex, and sinusoidal, including planar structure, have been reported to examine the performance of the proposed device. The influence of bending radius (5 to 20 mm) and bending amplitude (0.5 to 2 mm) is studied and analyzed to optimize the performance of the F-PSC device. It has been obtained that the planar F-PSC delivers higher PV parameters: short-circuit current density (JSC) of 21.9 mA/cm2, open-circuit voltage (VOC) of 1.18 V, fill factor (FF) of 79.31% and PCE of 20.5%. Simulated results are obtained regarding PV parameters, JV, and EQE characteristics. The findings of the reported study would significantly provide a way to explore the F-PSC performance with better-bending properties.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"23 3\",\"pages\":\"380-385\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10143993/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10143993/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reliability Test of 21% Efficient Flexible Perovskite Solar Cell Under Concave, Convex and Sinusoidal Bending
Perovskite solar cells (PSCs) have been considered the new rising star in photovoltaic (PV) technology. However, flexibility is the major limiting factor in PSCs for restraining the potential for wearable applications. Therefore, the flexible-PSC (F-PSC) design is reported and simulated using the Silvaco-TCAD tool. Different bending modes, such as concave, convex, and sinusoidal, including planar structure, have been reported to examine the performance of the proposed device. The influence of bending radius (5 to 20 mm) and bending amplitude (0.5 to 2 mm) is studied and analyzed to optimize the performance of the F-PSC device. It has been obtained that the planar F-PSC delivers higher PV parameters: short-circuit current density (JSC) of 21.9 mA/cm2, open-circuit voltage (VOC) of 1.18 V, fill factor (FF) of 79.31% and PCE of 20.5%. Simulated results are obtained regarding PV parameters, JV, and EQE characteristics. The findings of the reported study would significantly provide a way to explore the F-PSC performance with better-bending properties.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.