{"title":"基于空间和通道双向关注的集成电路衬底检测双网络系统","authors":"Eunjeong Choi;Jeongtae Kim","doi":"10.1109/TSM.2023.3289294","DOIUrl":null,"url":null,"abstract":"We propose a deep learning-based reference comparison system based on a twin network (also known as a Siamese network) for high-performance inspection of integrated circuit (IC) substrates. However, reference comparison-based inspection methods may suffer from false positives when inspecting image pairs with variations, such as mis-registration and color changes. To address these problems, we also propose a novel co-attention module that jointly considers the spatial-wise and channel-wise correlations between a feature block in one image and all other feature blocks in the other image to find similar feature blocks in the other image. By comparing the feature block in one image with similar feature blocks in the other image, the module can reduce the differences in areas where registration errors and/or color variation exist, thereby making the proposed inspection method more robust to image variation than existing methods. We verified the usefulness of the proposed method through experiments using an IC substrate dataset. In the experiments, the proposed method achieved significantly improved performance compared with existing methods in terms of precision and f1-score when the recall is almost the same.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"36 3","pages":"434-444"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and Channel-Wise Co-Attention-Based Twin Network System for Inspecting Integrated Circuit Substrate\",\"authors\":\"Eunjeong Choi;Jeongtae Kim\",\"doi\":\"10.1109/TSM.2023.3289294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep learning-based reference comparison system based on a twin network (also known as a Siamese network) for high-performance inspection of integrated circuit (IC) substrates. However, reference comparison-based inspection methods may suffer from false positives when inspecting image pairs with variations, such as mis-registration and color changes. To address these problems, we also propose a novel co-attention module that jointly considers the spatial-wise and channel-wise correlations between a feature block in one image and all other feature blocks in the other image to find similar feature blocks in the other image. By comparing the feature block in one image with similar feature blocks in the other image, the module can reduce the differences in areas where registration errors and/or color variation exist, thereby making the proposed inspection method more robust to image variation than existing methods. We verified the usefulness of the proposed method through experiments using an IC substrate dataset. In the experiments, the proposed method achieved significantly improved performance compared with existing methods in terms of precision and f1-score when the recall is almost the same.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"36 3\",\"pages\":\"434-444\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10163486/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10163486/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatial and Channel-Wise Co-Attention-Based Twin Network System for Inspecting Integrated Circuit Substrate
We propose a deep learning-based reference comparison system based on a twin network (also known as a Siamese network) for high-performance inspection of integrated circuit (IC) substrates. However, reference comparison-based inspection methods may suffer from false positives when inspecting image pairs with variations, such as mis-registration and color changes. To address these problems, we also propose a novel co-attention module that jointly considers the spatial-wise and channel-wise correlations between a feature block in one image and all other feature blocks in the other image to find similar feature blocks in the other image. By comparing the feature block in one image with similar feature blocks in the other image, the module can reduce the differences in areas where registration errors and/or color variation exist, thereby making the proposed inspection method more robust to image variation than existing methods. We verified the usefulness of the proposed method through experiments using an IC substrate dataset. In the experiments, the proposed method achieved significantly improved performance compared with existing methods in terms of precision and f1-score when the recall is almost the same.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.